Skip to main content
Log in

Blow-up and global existence of solutions for a time fractional diffusion equation

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study the blow-up and global existence of solutions to the following time fractional nonlinear diffusion equations

$$\left\{ {\begin{array}{*{20}{c}} {\mathop 0\limits^C D_t^\alpha u - \Delta u{ = _0}I_t^{1 - \gamma }\left( {{{\left| u \right|}^{p - 1}}u} \right),\;x \in {^N},\;t > 0,} \\ {u\left( {0,x} \right) = {u_0}\left( x \right),\;x \in {^N},} \\ \end{array}} \right.$$

where 0 < α < γ < 1, p > 1, u0C0(ℝN), \(_0I_t^\theta \) denotes left Riemann-Liouville fractional integrals of order θ. \(\mathop 0\limits^C D_t^\alpha u = \frac{\partial }{{\partial t}}{}_0I_t^{1 - \alpha }\left( {u\left( {t,x} \right) - u\left( {0,x} \right)} \right)\). Let β = 1 − γ. We prove that if \(1<p<p* = \max \left\{ {1 + \frac{\beta }{\alpha },1 + \frac{{2\left( {\alpha + \beta } \right)}}{{\alpha N}}} \right\}\), the solutions of (1.1) blows up in a finite time. If \(N<\frac{{2\left( {\alpha + \beta } \right)}}{\beta },p \ge p*\;or\;N \ge \;\frac{{2\left( {\alpha + \beta } \right)}}{\beta },p > p*\), and ∥u0Lqc(ℝN) is sufficiently small, where \({q_c} = \frac{{N\alpha \left( {p - 1} \right)}}{{2\left( {\alpha + \beta } \right)}}\), the solutions of (1.1) exists globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.G. Aronson, H.F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, No 1 (1978), 33–76.

    Article  MathSciNet  Google Scholar 

  2. Z. Bai, Y. Chen, H. Lian, S. Sun, On the existence of blow up solutions for a class of fractional differential equations. Fract. Calc. Appl. Anal. 17, No 4 (2014), 1175–1187; DOI: 10.2478/s13540-014-0220-2; https://www.degruyter.com/view/j/fca.2014.17.issue-4/issue-files/fca.2014.17.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  3. E.G. Bazhlekova, Subordination principle for fractional evolution equations. Fract. Calc. Appl. Anal. 3, No 3 (2000), 213–230.

    MathSciNet  MATH  Google Scholar 

  4. E.G. Bazhlekova, Subordination in a class of generalized time-fractional diffusion-wave equations. Fract. Calc. Appl. Anal. 21, No 4 (2018), 869–900; DOI: 10.1515/fca-2018-0048; https://www.degruyter.com/view/j/fca.2018.21.issue-4/issue-files/fca.2018.21.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  5. T. Cazenave, F. Dickstein, F.B. Weissler, An equation whose Fujita critical exponent is not given by scaling. Nonlinear Anal. 68, No 4 (2008), 862–874.

    Article  MathSciNet  Google Scholar 

  6. T. Cazenave, A. Haraux, An Introduction to Semilinear Evolution Equations. Oxford University Press, New York (1998).

    MATH  Google Scholar 

  7. S.D. Eidelman, A.N. Kochubei, Cauchy problem for fractional diffusion equations. J. Differential Equations 199, No 2 (2004), 211–255.

    Article  MathSciNet  Google Scholar 

  8. A.Z. Fino, M. Kirane, Qualitative properties of solutions to a time-space fractional evolution equation. Quart. Appl. Math. 70, No 1 (2012), 133–157.

    Article  MathSciNet  Google Scholar 

  9. H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = △ u+uα+1. J. Fac. Sci. Univ. Tokyo Sect. I 13, No 2 (1966), 109–124.

    MathSciNet  MATH  Google Scholar 

  10. K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic equations. Proc. Japan Acad. 49, No 7 (1973), 503–505.

    MathSciNet  MATH  Google Scholar 

  11. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science Limited, Amsterdam (2006).

    MATH  Google Scholar 

  12. M. Kirane, Y. Laskri, N.E. Tatar, Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives. J. Math. Anal. Appl. 312, No 2 (2005), 488–501.

    Article  MathSciNet  Google Scholar 

  13. K. Kobayashi, T. Siaro, H. Tanaka, On the growing up problem for semilinear heat equations. J. Math. Soc. Japan 29, No 3 (1977), 407–424.

    Article  MathSciNet  Google Scholar 

  14. A.N. Kochubei, Fractional parabolic systems. Potential Anal. 37, No 1 (2012), 1–30.

    Article  MathSciNet  Google Scholar 

  15. M. Li, C. Chen, F.B. Li, On fractional powers of generators of fractional resolvent families. J. Funct. Anal. 259, No 10 (2010), 2702–2726.

    Article  MathSciNet  Google Scholar 

  16. Y.N. Li, H.R. Sun, Z.S. Feng, Fractional abstract Cauchy problem with order α ∈(1,2). Dynamics of PDE 13, No 2 (2016), 155–177.

    MathSciNet  MATH  Google Scholar 

  17. Y.N. Li, Regularity of mild Solutions for fractional abstract Cauchy problem with order α ∈ 1,2). Z. Angew. Math. Phy. 66, No 6 (2015), 3283–3298.

    Article  MathSciNet  Google Scholar 

  18. Y.N. Li, H.R. Sun, Regularity of mild solutions to fractional Cauchy problem with Riemann-Liouville fractional derivative. Electronic J. of Differential Equations 2014, No 184 (2014), 1–13.

    MathSciNet  Google Scholar 

  19. C.N. Lu, F. Chen, H.W. Yang, Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions. Appl. Math. Comput. 327, No 15 (2018), 104–116.

    MathSciNet  MATH  Google Scholar 

  20. Yu. Luchko, M. Yamamoto, On the maximum principle for a time-fractional diffusion equation. Fract. Calc. Appl. Anal. 20, No 5 (2017), 1131–1145; DOI: 10.1515/fca-2017-0060; https://www.degruyter.com/view/j/fca.2017.20.issue-5/issue-files/fca.2017.20.issue-5.xml.

    Article  MathSciNet  Google Scholar 

  21. F. Mainardi, Fractional calculus, some basic problems in continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag (1997), 291–348.

    Chapter  Google Scholar 

  22. F. Mainardi, On the initial value problem for the fractional diffusion-wave equation, Waves and Stability in Continuous Media. World Scientific (1994), 246–251.

    Google Scholar 

  23. C. Martinez, M. Sanz, The Theory of Fractional Powers of Operators. Elsevier, Amsterdam-London-New York (2001).

    MATH  Google Scholar 

  24. M.M. Meerschaert, E. Nane, P. Vellaisamy, Fractional Cauchy problems on bounded domains. Ann. Probab. 37, No 3 (2009), 979–1007.

    Article  MathSciNet  Google Scholar 

  25. R. Metzler, J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, No 31 (2004), 161–208.

    Article  MathSciNet  Google Scholar 

  26. E. Mitidieri, S.I. Pohozaev, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities. Proc. Steklov Inst. Math. 234, (2001), 3–383.

    MATH  Google Scholar 

  27. G.M. Mophou, G.M. N’Guérékata, On a class of fractional differential equations in a Sobolev space. Appl. Anal. 91, No 1 (2012), 15–34.

    Article  MathSciNet  Google Scholar 

  28. R.R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status Solidi 133, No 1 (1986), 425–430.

    Article  Google Scholar 

  29. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983).

    Book  Google Scholar 

  30. I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999).

    MATH  Google Scholar 

  31. K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, No 1 (2011), 426–447.

    Article  MathSciNet  Google Scholar 

  32. S. Samko, J.J. Trujillo, Remarks to the paper “On the existence of blow up solutions for a class of fractional differential equations” by Z. Bai et al. Fract. Calc. Appl. 18, No 1 (2015), 281–283; DOI: 10.1515/fca-2015-0018; https://www.degruyter.com/view/j/fca.2015.18.issue-1/issue-files/fca.2015.18.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  33. W.R. Schneider, W. Wyss, Fractional diffusion and wave equations. J. Math. Phy. 30, No 1 (1989), 134–144.

    Article  MathSciNet  Google Scholar 

  34. J.R. Wang, A.G. Ibrahim, M. Fec̆kan, Nonlocal Cauchy problems for semilinear differential inclusions with fractional order in Banach spaces. Commun. Nonlinear Sci. Numer. Simul. 27, No 1-3 (2015), 281–293.

    Article  MathSciNet  Google Scholar 

  35. R.N. Wang, D.H. Chen, T.J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators. J. Differential Equations 252, No 1 (2012), 202–235.

    Article  MathSciNet  Google Scholar 

  36. F.B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation. Israel J. Math. 38, No 1-2 (1981), 29–40.

    Article  MathSciNet  Google Scholar 

  37. G.M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos. Physica D 76, No 1-3 (1994), 110–122.

    Article  MathSciNet  Google Scholar 

  38. Q.G. Zhang, H.R. Sun, The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation. Topol. Meth. Nonlinear Anal. 46, No 1 (2015), 69–92.

    Article  MathSciNet  Google Scholar 

  39. Q.G. Zhang, Y.N. Li, The critical exponent for a time fractional diffusion equation with nonlinear memory. Math. M. Appl. Sci. 41, No 16 (2018), 6443–6456.

    Article  MathSciNet  Google Scholar 

  40. Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, No 3 (2010), 1063–1077.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaning Li.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, Q. Blow-up and global existence of solutions for a time fractional diffusion equation. FCAA 21, 1619–1640 (2018). https://doi.org/10.1515/fca-2018-0085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0085

MSC 2010

Key Words and Phrases

Navigation