Skip to main content
Log in

On the Triple Junction Problem without Symmetry Hypotheses

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We investigate the Allen–Cahn system \(\Delta u-W_u(u)=0\), \(u:\mathbb {R}^2\rightarrow \mathbb {R}^2\), where \(W\in C^2(\mathbb {R}^2,[0,+\infty ))\) is a potential with three global minima. We establish the existence of an entire solution u which possesses a triple junction structure. The main strategy is to study the global minimizer \(u_\varepsilon \) of the variational problem \(\min \int _{B_1} \left( \frac{\varepsilon }{2}\vert \nabla u\vert ^2+\frac{1}{\varepsilon }W(u) \right) \,\textrm{d}z\), \(u=g_\varepsilon \) on \(\partial B_1\) for some suitable boundary data \(g_\varepsilon \). The point of departure is an energy lower bound that plays a crucial role in estimating the location and size of the diffuse interface. We do not impose any symmetry hypothesis on the solution or on the potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. For fixed \(\varepsilon \), from Sard’s Theorem and the Implicit Function Theorem we have for a.a.\(\gamma \), each connected component of \(\Gamma ^i_{\varepsilon ,\gamma }\cap B_1\) is a \(C^1\) curve. Therefore even if the chosen \(\{\varepsilon ,\gamma \}\) doesn’t satisfy this property, we can always take a slightly smaller \(\gamma '\) so that this property holds for \(\{\varepsilon ,\gamma '\}\). Then one can proceed with the rest of the proof using \(\{\varepsilon ,\gamma '\}\) and all the conclusions will not be affected.

References

  1. Alikakos, N.: Some basic facts on the system \(\Delta u-W_u(u)=0\). Proc. Am. Math. Soc. 139(1), 153–162, 2011

    Article  Google Scholar 

  2. Alikakos, N.D.: On the structure of phase transition maps for three or more coexisting phases. In: Chambolle, A., Novaga, M., Valdinoci, E. (eds.) Geometric Partial Differential Equations proceedings, pp. 1–31. Scuola Normale Superiore, Pisa (2013)

    Google Scholar 

  3. Alikakos, N.D., Fusco, G.: Density estimates for vector minimizers and applications. Discrete Contin. Dyn. Syst. 35(12), 5631–5663, 2015

    Article  MathSciNet  Google Scholar 

  4. Alikakos, N.D., Fusco, G.: A maximum principle for systems with variational structure and an application to standing waves. J. Eur. Math. Soc. 17(7), 1547–1567, 2015

    Article  MathSciNet  Google Scholar 

  5. Alikakos, N.D., Fusco, G.: Sharp lower bounds for vector Allen–Cahn energy and qualitative properties of minimizes under no symmetry hypotheses. Bull. Hellenic Math. Soc. 67, 12–58, 2023

    MathSciNet  Google Scholar 

  6. Alikakos, N.D., Fusco, G., Smyrnelis, P.: Elliptic systems of phase transition type. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 91. Springer, Switzerland (2018)

  7. Ambrosio, L., Cabré, X.: Entire solutions of semilinear elliptic equations in \(\mathbb{R} ^3\) and a conjecture of De Giorgi. J. Am. Math. Soc. 13(4), 725–739, 2000

    Article  Google Scholar 

  8. Czarnecki, A., Kulczycki, M., Lubawski, W.: On the connectedness of boundary and complement for domains. Ann. Polon. Math. 103(2), 189–191, 2011

    Article  MathSciNet  Google Scholar 

  9. Baldo, S.: Minimal interface criterion for phase transitions in mixtures of Cahn–Hilliard fluids. Ann. Inst. Henri Poincaré C Anal. Non Linéaire 7(2), 67–90, 1990

    Article  ADS  MathSciNet  Google Scholar 

  10. Bronsard, L., Gui, C., Schatzman, M.: A three-layered minimizer in \(\mathbb{R} ^2\) for a variational problem with a symmetric three-well potential. Commun. Pure Appl. Math. 49(7), 677–715, 1996

    Article  Google Scholar 

  11. Chodosh, O.: Lecture notes on geometric features of the Allen–Cahn equation (Princeton) (2019)

  12. Del Pino, M., Kowalczyk, M., Wei, J.: On De Giorgi’s conjecture in dimension \(n\ge 9\). Ann. Math. 1485–1569 (2011)

  13. Del Pino, M., Kowalczyk, M., Wei, J.: Entire solutions of the Allen–Cahn equation and complete embedded minimal surfaces of finite total curvature in \({\mathbb{R}}^3\). J. Differ. Geom. 93(1), 67–131, 2013

    Google Scholar 

  14. Farina, A., Valdinoci, E.: 1D symmetry for solutions of semilinear and quasilinear elliptic equations. Trans. Am. Math. Soc. 363(2), 579–609, 2011

    Article  MathSciNet  Google Scholar 

  15. Fleming, W.H.: Flat chains over a finite coefficient group. Trans. Am. Math. Soc. 121(1), 160–186, 1966

    Article  MathSciNet  Google Scholar 

  16. Flores, G., Padilla, P., Tonegawa, Y.: Higher energy solutions in the theory of phase transitions: a variational approach. J. Differ. Equ. 169(1), 190–207, 2001

    Article  ADS  MathSciNet  Google Scholar 

  17. Fonseca, I., Tartar, L.: The gradient theory of phase transitions for systems with two potential wells. Proc. R. Soc. Edinb. Sect. A Math. 111(1–2), 89–102, 1989

    Article  MathSciNet  Google Scholar 

  18. Fusco, G.: Layered solutions to the vector Allen–Cahn equation in \(\mathbb{R} ^2\). Minimizers and heteroclinic connections. Commun. Pure Appl. Anal. 16(5), 1807, 2017

    Article  MathSciNet  Google Scholar 

  19. Fusco, G.: Minimizing under relaxed symmetry constraints: Triple and N-junctions. Annali Scuola Normale Superiore - Classe di Scienze (2022)

  20. Gazoulis, D.: On the \(\Gamma \)-convergence of the Allen–Cahn functional with boundary conditions. (2023). arXiv:2301.07458

  21. Ghoussoub, N., Gui, C.: On a conjecture of De Giorgi and some related problems. Math. Ann. 311(3), 481–491, 1998

    Article  MathSciNet  Google Scholar 

  22. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, vol. 224. Springer, Berlin (1977)

    Google Scholar 

  23. Giusti: Minimal Surfaces and Functions of Bounded Variation, vol. 80. Birkhäuser, Boston (1984)

    Book  Google Scholar 

  24. Guaraco, M.A.: Min–max for phase transitions and the existence of embedded minimal hypersurfaces. J. Differ. Geom. 108(1), 91–133, 2018

    MathSciNet  Google Scholar 

  25. Gui, C., Schatzman, M.: Symmetric quadruple phase transitions. Indiana Univ. Math. J. 781–836 (2008)

  26. Liu, Y., Wang, K., Wei, J.: Global minimizers of the Allen–Cahn equation in dimension \(n\ge 8\). J. Math. Pures Appl. 108(6), 818–840, 2017

    Article  MathSciNet  Google Scholar 

  27. Modica, L.: \(\Gamma \)—convergence to minimal surfaces problem and global solution of \(\Delta u= 2 (u^3- u)\). In: Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pp. 223–244 (1979)

  28. Monteil, A., Santambrogio, F.: Metric methods for heteroclinic connections in infinite dimensional spaces. Indiana Univ. Math. J. 69, 1445–1503, 2020

    Article  MathSciNet  Google Scholar 

  29. Pacard, F.: The role of minimal surfaces in the study of the Allen–Cahn equation. Geom. Anal. Partial Differ. Equ. Surf. 570, 137–163, 2012

    MathSciNet  Google Scholar 

  30. Pacard, F., Wei, J.: Stable solutions of the Allen–Cahn equation in dimension 8 and minimal cones. J. Funct. Anal. 264(5), 1131–1167, 2013

    Article  MathSciNet  Google Scholar 

  31. Sandier, É., Sternberg, P.: Allen–Cahn solutions with triple junction structure at infinity. (2023). arXiv:2305.13474

  32. Savin, O.: Regularity of flat level sets in phase transitions. Ann. Math. 41–78 (2009)

  33. Schatzman, M.: Asymmetric heteroclinic double layers. ESAIM: Control Optim. Calc. Var. 8, 965–1005, 2002

    MathSciNet  Google Scholar 

  34. Smyrnelis, P.: Connecting orbits in Hilbert spaces and applications to PDE. Commun. Pure Appl. Anal. 19(5), 2797, 2020

    Article  MathSciNet  Google Scholar 

  35. Sternberg, P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101(3), 209–260, 1988

    Article  MathSciNet  Google Scholar 

  36. Sternberg, P., Zeimer, W.P.: Local minimisers of a three-phase partition problem with triple junctions. Proc. R. Soc. Edinb. Sect. A Math. 124(6), 1059–1073, 1994

    Article  MathSciNet  Google Scholar 

  37. Taylor, J.E.: The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces. Ann. Math. 103(3), 489–539, 1976

    Article  MathSciNet  Google Scholar 

  38. Wang, K.: A new proof of Savin’s theorem on Allen–Cahn equations. J. Eur. Math. Soc. 19(10), 2997–3051, 2017

    Article  ADS  MathSciNet  Google Scholar 

  39. Wei, J.: Geometrization program of semilinear elliptic equations. AMS/IP Stud. Adv. Math. 51, 831–857, 2012

    MathSciNet  Google Scholar 

  40. White, B.: Existence of least-energy configurations of immiscible fluids. J. Geom. Anal. 6(1), 151–161, 1996

    Article  MathSciNet  Google Scholar 

  41. White, B.: Lecture notes on flat chains and geometric measure theory. Stanford, (notes by Otis Chodosh) (2012)

  42. Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton (1957) https://doi.org/10.1515/9781400877577.

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank Arghir Zarnescu for his interest in this work, for the stimulating discussions and for his great hospitality. N. D. Alikakos acknowledges the “Basic research Financing” under the National Recovery and Resilience Plan “Greece 2.0” funded by the European Union—NextGeneration EU (H.F.R.I. Project Number: 016097). Z. Geng is supported by the Basque Government through the BERC 2022–2025 program and by the Spanish State Research Agency through BCAM Severo Ochoa excellence accreditation SEV-2017-0718 and through project PID2020-114189RB-I00 funded by Agencia Estatal de Investigación (PID2020-114189RB-I00/AEI/10.13039/501100011033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Geng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by I. Fonseca.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 2.5

For sufficiently small \(\varepsilon \), we want to construct an energy competitor \(u_{test}\in W^{1,2}(B_1,\mathbb {R}^2)\) with the boundary condition \(u_{test}\big \vert _{\partial B_1}=g_\varepsilon \) and show that

$$\begin{aligned} \int _{B_1}\left( \frac{\varepsilon }{2}\vert \nabla u_{test}\vert ^2+\frac{1}{\varepsilon }W(u_{test}) \right) \,\textrm{d}z\le \sigma _{12}+\sigma _{13}+\sigma _{23}+C\varepsilon , \end{aligned}$$
(A1)

for a positive constant C independent of \(\varepsilon \).

Let \(c_0\) be as in (19). Set

$$\begin{aligned} r_1{:}{=}c_0\varepsilon ,\quad r_2{:}{=}1-c_0\varepsilon . \end{aligned}$$

We also define the following angles that correspond to the locations of the three interfaces.

$$\begin{aligned} \varphi _{12}{:}{=}\frac{\pi }{2}+\frac{\alpha _2-\alpha _1}{2},\quad \varphi _{13}{:}{=}\frac{3\pi }{2}-\frac{\alpha _3}{2},\quad \varphi _{23}{:}{=}\frac{3\pi }{2}+\frac{\alpha _3}{2}. \end{aligned}$$

Set \(\varphi _0\) as a fixed angle

$$\begin{aligned} \varphi _0{:}{=}\frac{1}{4}\min \{\alpha _1,\alpha _2,\alpha _3\}. \end{aligned}$$

We define

$$\begin{aligned}&\begin{aligned} S(s,t;\theta _1,\theta _2)&{:}{=}\{(r\cos \theta ,r\sin \theta ):s\le r\le t,\theta _1\le \theta \le \theta _2 \},\\ {}&\quad \text {if}\quad 0\le s<t\le 1,\quad 0\le \theta _1<\theta _2\le 2\pi . \end{aligned}\\&\begin{aligned} S(s,t;\theta _1,\theta _2)&{:}{=}\{(r\cos \theta ,r\sin \theta ):s\le r\le t,\theta \in [\theta _1,2\pi ]\cup [0,\theta _2] \},\\ {}&\quad \text {if}\quad 0\le s<t\le 1,\quad 0\le \theta _2<\theta _1\le 2\pi . \end{aligned} \end{aligned}$$

Recall that \(U_{12}\in W_{loc}^{1,2}(\mathbb {R},\mathbb {R}^2)\) is a 1D minimizer of the minimization problem

$$\begin{aligned}&\min \int _{-\infty }^\infty \left( \frac{1}{2}\vert v'\vert ^2+W(v) \right) \,d\eta ,\\&\lim \limits _{x\rightarrow -\infty } v(\eta )=a_1,\quad \lim \limits _{\eta \rightarrow \infty } v(\eta )=a_2, \quad v(\mathbb {R})\subset \mathbb {R}^2\setminus \{a_1,a_2\}. \end{aligned}$$

The properties of this 1D minimizer play an important role in our construction of \(u_{test}\).

Now we are ready to construct \(u_{test}\). On \(S(r_1,r_2; \varphi _{12}-\varphi _0,\varphi _{12}+\varphi _0)\), we set

$$\begin{aligned} u_{test}=U_{12}\left( \frac{r\sin (\varphi _{12}-\theta )}{\varepsilon }\right) \end{aligned}$$

By the exponential decay estimate for the minimizing connection \(U_{12}\) (see [6, Proposition 2.4]), we have the following estimates for \(u_{test}\) on \(\partial S(r_1,r_2;\varphi _{12}-\varphi _0,\varphi _{12}+\varphi _0)\):

$$\begin{aligned}&\vert u_{test}(r,\varphi _{12}-\varphi _0)-a_2\vert \le Ke^{-\frac{kr}{\varepsilon }\sin {\varphi _0}},\quad \text {on}\quad \{r_1\le r\le r_2, \theta =\varphi _{12}-\varphi _0\}, \end{aligned}$$
(A2)
$$\begin{aligned}&\vert u_{test}(r,\varphi _{12}+\varphi _0)-a_1\vert \le Ke^{-\frac{kr}{\varepsilon }\sin {\varphi _0}},\quad \text {on}\quad \{r_1\le r\le r_2, \theta =\varphi _{12}+\varphi _0\}, \end{aligned}$$
(A3)
$$\begin{aligned}&\vert u_{test}(r_1,\theta )-a_1\vert \le Ke^{-kc_0\sin (\theta -\varphi _{12})},\quad \text {on}\quad \{r=r_1, \varphi _{12}\le \theta \le \varphi _{12}+\varphi _0\},\end{aligned}$$
(A4)
$$\begin{aligned}&\vert u_{test}(r_1,\theta )-a_2\vert \le Ke^{-kc_0\sin (\varphi _{12}-\theta )}, \quad \text {on}\quad \{r=r_1, \varphi _{12}-\varphi _0\le \theta \le \varphi _{12}\}, \end{aligned}$$
(A5)
$$\begin{aligned}&\vert u_{test}(r_2,\theta )-a_1\vert \le Ke^{-k\frac{r_2\sin (\theta -\varphi _{12})}{\varepsilon }}, \quad \text {on}\quad \{r=r_2, \varphi _{12}\le \theta \le \varphi _{12}+\varphi _0\},\end{aligned}$$
(A6)
$$\begin{aligned}&\vert u_{test}(r_2,\theta )-a_2\vert \le Ke^{-k\frac{r_2\sin (\varphi _{12}-\theta )}{\varepsilon }}, \quad \text {on}\quad \{r=r_2, \varphi _{12}-\varphi _0\le \theta \le \varphi _{12}\}. \end{aligned}$$
(A7)

Here Kk are constants that are independent of \(\varepsilon \).

For calculating the energy in \(S(r_1,r_2;\varphi _{12}-\varphi _0,\varphi _{12}+\varphi _0)\), it is convenient to rotate the coordinate system by setting

$$\begin{aligned} x'=\cos \frac{\alpha _2-\alpha _1}{2}x+\sin \frac{\alpha _2-\alpha _1}{2}y,\quad y'=-\sin \frac{\alpha _2-\alpha _1}{2}x+\cos \frac{\alpha _2-\alpha _1}{2}y. \end{aligned}$$

Note that \(u_{test}\) only depends on the \(x'\) variable, thus \(\vert \partial _{y'} u_{test}\vert =0\). We compute the energy

$$\begin{aligned}&\int _{S(r_1,r_2,\varphi _{12}-\varphi _0,\varphi _{12}+\varphi _0)} \left( \frac{\varepsilon }{2}\vert \nabla u_{test}\vert ^2+\frac{1}{\varepsilon }W(u_{test}) \right) \,\textrm{d}z\nonumber \\&\quad \le \int _{r_1}^{r_2}\,\textrm{d}y'\int _{-\tan {\varphi _0}}^{\tan {\varphi _0}}\left( \frac{\varepsilon }{2}\vert \partial _{x'} u_{test}\vert ^2+\frac{1}{\varepsilon }W(u_{test}) \right) \,\textrm{d}x'\nonumber \\&\quad \le (r_2-r_1)\sigma _{12}\nonumber \\&\quad \le (1-c_0\varepsilon )\sigma _{12}. \end{aligned}$$
(A8)

Similarly, we set, respectively,

$$\begin{aligned} u_{test}&=U_{31}\left( \frac{r\sin {(\varphi _{13}-\theta )}}{\varepsilon }\right) , \quad \text {on}\quad S(r_1,r_2;\varphi _{13}-\varphi _0,\varphi _{13}+\varphi _0),\\ u_{test}&=U_{23}\left( \frac{r\sin {(\varphi _{23}-\theta )}}{\varepsilon }\right) , \quad \text {on}\quad S(r_1,r_2;\varphi _{23}-\varphi _0,\varphi _{23}+\varphi _0). \end{aligned}$$

Note that if \(\varphi _{23}+\varphi _0>2\pi \), we can replace it by \(\varphi _{23}+\varphi _0-2\pi \). In particular, when \(\theta =\varphi _{13}-\varphi _0\), it holds that

$$\begin{aligned} \vert u_{test}(r,\varphi _{13}-\varphi _0)-a_1\vert \le Ke^{-k\frac{r\sin {\varphi _0}}{\varepsilon }},\quad \text {on}\quad \{r_1\le r\le r_2,\,\theta =\varphi _{13}-\varphi _0\}. \end{aligned}$$
(A9)

With (A3) and (A9) we are able to define \(u_{test}\) on \(S(r_1,r_2;\varphi _{12}+\varphi _0,\varphi _{13}-\varphi _0)\) by

$$\begin{aligned} u_{test}(r,\theta ){:}{=} u_{test}(r,\varphi _{12}+\varphi _0)\frac{\varphi _{13}-\varphi _0-\theta }{\alpha _1-2\varphi _0}+u_{test}(r,\varphi _{13}-\varphi _0)\frac{\theta -(\varphi _{12}+\varphi _0)}{ \alpha _1-2\varphi _0}. \end{aligned}$$

This construction can be extended to \(S(r_1,r_2; \varphi _{13}+\varphi _0,\varphi _{23}-\varphi _0)\) and \(S(r_1,r_2;\varphi _{23}+\varphi _0, \varphi _{12}-\varphi _0)\) in the same way. The energy in \(S(r_1,r_2;\varphi _{12}+\varphi _0,\varphi _{13}-\varphi _0)\) will be estimated in polar coordinates.

$$\begin{aligned}&\int _{S(r_1,r_2;\varphi _{12}+\varphi _0,\varphi _{13}-\varphi _0)} \left( \frac{\varepsilon }{2}\vert \nabla u_{test}\vert ^2+\frac{1}{\varepsilon }W(u_{test}) \right) \,\textrm{d}z\nonumber \\&\quad =\int _{\varphi _{12}+\varphi _0}^{\varphi _{13}-\varphi _0}\int _{r_1}^{r_2} \left( \frac{\varepsilon }{2}\left( \left| \frac{\partial u_{test}}{\partial r}\right| ^2+\frac{1}{r^2}\left| \frac{\partial u_{test}}{\partial \theta }\right| ^2\right) +\frac{1}{\varepsilon }W(u_{test}) \right) r\,dr\,d\theta . \end{aligned}$$
(A10)

Note that

$$\begin{aligned} \left| \frac{\partial u_{test}}{\partial r}\right| ^2&\le 2\left( \left| \frac{\partial u_{test}(r,\varphi _{12}+\varphi _0)}{\partial r}\right| ^2+\left| \frac{\partial u_{test}(r,\varphi _{13}-\varphi _0)}{\partial r}\right| ^2\right) \\&\le \frac{2\sin ^2{\varphi _0}}{\varepsilon ^2} \left( \left| U_{12}'\left( -\frac{r\sin {\varphi _0}}{\varepsilon }\right) \right| ^2+\left| U_{31}'\left( \frac{r\sin {\varphi _0}}{\varepsilon }\right) \right| ^2\right) \\&\le \frac{Ce^{-\frac{2kr}{\varepsilon }\sin {\varphi _0}}}{\varepsilon ^2},\\ \left| \frac{\partial u_{test}}{\partial \theta }\right| ^2&\le Ce^{-\frac{2kr}{\varepsilon }\sin {\varphi _0}},\quad W(u_{test}(r,\theta ))\le Ce^{-\frac{2kr}{\varepsilon }\sin {\varphi _0}}, \end{aligned}$$

where C is a universal constant.

Substituting these into (A10) yields

$$\begin{aligned}&\int _{S(r_1,r_2;\varphi _{12}+\varphi _0,\varphi _{13}-\varphi _0)} \left( \frac{\varepsilon }{2}\vert \nabla u_{test}\vert ^2+\frac{1}{\varepsilon }W(u_{test}) \right) \,\textrm{d}z\nonumber \\&\quad \le \int _{\varphi _{12}+\varphi _0}^{\varphi _{13}-\varphi _0} \!\!\int _{c_0\varepsilon }^{1-c_0\varepsilon } \left( \! \frac{\varepsilon }{2}\left( \! \frac{Ce^{-\frac{2kr}{\varepsilon }\sin {\varphi _0}}}{\varepsilon ^2}\!+\!\frac{Ce^{-\frac{2kr}{\varepsilon }\sin {\varphi _0}}}{r^2} \!\right) \!+\!\frac{1}{\varepsilon }Ce^{-\frac{2kr}{\varepsilon }\sin {\varphi _0}}\! \right) r\,\textrm{d}r\textrm{d}\theta \nonumber \\&\quad \le C(W,c_0)\varepsilon , \end{aligned}$$
(A11)

for some constant \(C(W,c_0)\) that does not depend on \(\varepsilon \).

Now that \(u_{test}\) has been already defined on the annulus \(S(r_1,r_2;0,2\pi )\), we proceed to define \(u_{test}\) in the inner ball \(B_{r_1}\) and the outer layer \(S(r_2,1; 0,2\pi )\). First of all we take \(u_{test}\) to be the harmonic extension in \(B_{r_1}\), with respect to its boundary data.

$$\begin{aligned} \begin{aligned} \Delta&u_{test}=0 \text { in }B_{r_1},\\ u_{test}\big \vert _{\partial B_{r_1}}&\text { is given by the construction on }S(r_1,r_2;0,2\pi ). \end{aligned} \end{aligned}$$

It is not hard to verify that

$$\begin{aligned} \vert u_{test}\vert \le C,\quad \vert \nabla _T u_{test}\vert \le \frac{C}{\varepsilon } \quad \text {on}\quad \partial B_{r_1}, \end{aligned}$$

where \(\nabla _T\) denotes the tangential derivative, \(C=C(W,c_0)\) is a constant independent of \(\varepsilon \). By elliptic regularity, \(\vert u_{test}\vert \) and \(\varepsilon \vert \nabla u_{test}\vert \) are also bounded by some universal constant C inside \(B_{r_1}\). Then we have

$$\begin{aligned} \int _{B_{r_1}} \left( \frac{\varepsilon }{2}\vert \nabla u_{test}\vert ^2+\frac{1}{\varepsilon }W(u_{test}) \right) \,\textrm{d}z\le & {} \pi (c_0\varepsilon )^2\left( \frac{\varepsilon }{2} \left( \frac{C}{\varepsilon }\right) ^2+\frac{1}{\varepsilon }C\right) \nonumber \\\le & {} C(W,c_0)\varepsilon . \end{aligned}$$
(A12)

It remains to construct \(u_{test}\) on the annulus \(S(r_2,1;0,2\pi )\). Set

$$\begin{aligned} u_{test}(r,\theta )=\frac{1-r}{c_0\varepsilon } u_{test}(r_2,\theta )+\frac{r-r_2}{c_0\varepsilon }g_{\varepsilon }(\theta ), \quad r_2\le r\le 1, \quad \theta \in [0,2\pi ). \end{aligned}$$
(A13)

Here \(g_\varepsilon \) is the boundary data on \(\partial B_1\) defined by (19) and \(u_{test}(r_2,\theta )\) is given by the construction of \(u_{test}\) on \(\partial S(r_1,r_2;0,2\pi )\). We have

$$\begin{aligned}&\int _{S(r_2,1;\varphi _{12}-\varphi _0,\varphi _{13}-\varphi _0)} \left( \frac{\varepsilon }{2}\vert \nabla u_{test}\vert ^2+\frac{1}{\varepsilon }W(u_{test}) \right) \,\textrm{d}z\nonumber \\&\quad =\left( \int _{\varphi _{12}-c_0\varepsilon }^{\varphi _{12}+c_0\varepsilon }+\int _{\varphi _{12}-\varphi _0}^{\varphi _{12}-c_0\varepsilon }+\int _{\varphi _{12}+c_0\varepsilon }^{\varphi _{12}+\varphi _0}+\int _{\varphi _{12}+\varphi _0}^{\varphi _{13}-\varphi _0} \right) \nonumber \\&\qquad \int _{r_2}^{1} \bigg ( \frac{\varepsilon }{2}\left( \left| \frac{\partial u_{test}}{\partial r}\right| ^2 +\frac{1}{r^2}\left| \frac{\partial u_{test}}{\partial \theta }\right| ^2\right) +\frac{1}{\varepsilon }W(u_{test}) \bigg )r\,\textrm{d}r\,\textrm{d}\theta . \end{aligned}$$
(A14)

We estimate each part separately. In \(S(r_2,1;\varphi _{12}-c_0\varepsilon ,\varphi _{12}+c_0\varepsilon )\), it holds that

$$\begin{aligned}&\int _{\varphi _{12}-c_0\varepsilon }^{\varphi _{12}+c_0\varepsilon }\int _{r_2}^1 \left( \frac{\varepsilon }{2}\left( \left| \frac{\partial u_{test}}{\partial r}\right| ^2+\frac{1}{r^2}\left| \frac{\partial u_{test}}{\partial \theta }\right| ^2\right) +\frac{1}{\varepsilon }W(u_{test}) \right) r\,\textrm{d}r\,\textrm{d}\theta .\\&\quad \le 2\vert c_0\varepsilon \vert ^2 \cdot \left( \frac{\varepsilon }{2}\bigg \vert \frac{C}{\varepsilon }\bigg \vert ^2+\frac{1}{\varepsilon } C \right) \le C\varepsilon ; \end{aligned}$$

In \(S(r_2,1; \varphi _{12}-\varphi _0,\varphi _{12}-c_0\varepsilon )\cup S(r_2,1; \varphi _{12}+c_0\varepsilon ,\varphi _{12}+\varphi _0)\), by (A6) and (A7) we have

$$\begin{aligned}&\left( \int _{\varphi _{12}-\varphi _0}^{\varphi _{12}-c_0\varepsilon }+\int _{\varphi _{12}+c_0\varepsilon }^{\varphi _{12}+\varphi _0}\right) \int _{r_2}^1 \left( \frac{\varepsilon }{2}\left( \left| \frac{\partial u_{test}}{\partial r}\right| ^2+\frac{1}{r^2}\left| \frac{\partial u_{test}}{\partial \theta }\right| ^2\right) +\frac{1}{\varepsilon }W(u_{test}) \right) r\,\textrm{d}r\,\textrm{d}\theta .\\&\quad \le \left( \int _{\varphi _{12}-\varphi _0}^{\varphi _{12}-c_0\varepsilon }+\int _{\varphi _{12}+c_0\varepsilon }^{\varphi _{12}+\varphi _0}\right) \int _{r_2}^1 \bigg ( \frac{\varepsilon }{2}\frac{\vert u_{test}(r_2,\theta )-g_\varepsilon (\theta )\vert ^2}{(c_0\varepsilon )^2}\\&\qquad +\frac{\varepsilon }{2r^2}\left( \left| \frac{\partial u_{test}(r_2,\theta )}{\partial \theta }\right| ^2+\left| \frac{\partial g_\varepsilon (\theta )}{\partial \theta }\right| ^2\right) +\frac{1}{\varepsilon } C\vert u_{test}(r_2,\theta )-g_\varepsilon (\theta )\vert ^2\bigg )r\,\textrm{d}r\,\textrm{d}\theta \\&\quad \le C\int _{c_0\varepsilon }^{\varphi _0} \int _{r_2}^1 \left( \frac{1}{\varepsilon } e^{-k\frac{\sin \theta }{\varepsilon }} \right) \,r\,\textrm{d}r\,\textrm{d}\theta \le C\varepsilon ; \end{aligned}$$

In \(S(r_2,1;\varphi _{12}+\varphi _0,\varphi _{13}-\varphi _0)\), we note that

$$\begin{aligned} u_{test}(r, \theta )-a_1&= \frac{r-r_2}{c_0\varepsilon } \bigg ((u_{test}(r_2,\varphi _{12}+\varphi _0)-a_1)\frac{\varphi _{13}-\varphi _0-\theta }{\alpha _1-2\varphi _0}\nonumber \\&\quad +(u_{test}(r_2,\varphi _{13}-\varphi _0)-a_1)\frac{\theta -(\varphi _{12}+\varphi _0)}{ \alpha _1-2\varphi _0}\bigg ), \end{aligned}$$
(A15)

which implies that

$$\begin{aligned} \int _{\varphi _{12}+\varphi _0}^{\varphi _{13}-\varphi _0}\int _{r_2}^1 \left( \frac{\varepsilon }{2}\left( \left| \frac{\partial u_{test}}{\partial r}\right| ^2+\frac{1}{r^2}\left| \frac{\partial u_{test}}{\partial \theta }\right| ^2\right) +\frac{1}{\varepsilon }W(u_{test}) \right) r\,\textrm{d}r\,\textrm{d}\theta \le Ce^{-\frac{k}{\varepsilon }}\le C\varepsilon . \end{aligned}$$

Therefore, (A14) becomes

$$\begin{aligned} \int _{S(r_2,1;\varphi _{12}-\varphi _0,\varphi _{13}-\varphi _0)} \left( \frac{\varepsilon }{2}\vert \nabla u_{test}\vert ^2+\frac{1}{\varepsilon }W(u_{test}) \right) \,\textrm{d}z\le C\varepsilon . \end{aligned}$$
(A16)

Finally, using (A8), (A11), (A12), (A16) we conclude that

$$\begin{aligned} \int _{S(0,1;\varphi _{12}-\varphi _0,\varphi _{13}-\varphi _0)} \left( \frac{\varepsilon }{2}\vert \nabla u_{test}\vert ^2+\frac{1}{\varepsilon }W(u_{test}) \right) \,\textrm{d}z\le \sigma _{12}+ C(W,c_0)\varepsilon . \end{aligned}$$

The energies on \(S(0,1;\varphi _{13}-\varphi _0,\varphi _{23}-\varphi _0)\) and \(S(0,1;\varphi _{23}-\varphi _0,\varphi _{12}-\varphi _0)\) satisfy the same estimate. Adding them up leads to (20), which completes the proof.

Appendix B: The Minimization Problem (81)

Recall that

$$\begin{aligned}&E(\mu _1,\mu _2,y^*)\\&\quad = \bigg (\left[ \sin {\frac{\alpha _3}{2}}(\sigma _{13}+\sigma _{23})+\left( \mu _2-\mu _1+\sin {\frac{\alpha _2-\alpha _1}{2}}\right) (\sigma _{23}-\sigma _{13})\right] ^2\\&\qquad +\left[ \left( y^*+\cos {\frac{\alpha _3}{2}}\right) (\sigma _{13}+\sigma _{23})\right] ^2\bigg )^{\frac{1}{2}}\\&\qquad +\sigma _{12}\sqrt{(\mu _1+\mu _2)^2+\left( \cos {\frac{\alpha _2-\alpha _1}{2}}-y^*\right) ^2}, \end{aligned}$$

with the domains of \(\mu _1,\,\mu _2,\,y^*\) given by

$$\begin{aligned}&\mu _1\in \left[ 0,\sin {\frac{\alpha _3}{2}}+\sin {\frac{\alpha _2-\alpha _1}{2}}-2c_0\varepsilon \right] ,\\&\mu _2\in \left[ 0,\sin {\frac{\alpha _3}{2}}-\sin {\frac{\alpha _2-\alpha _1}{2}}-2c_0\varepsilon \right] ,\\&y_*\in \left[ -\cos {\frac{\alpha _3}{2}}+c_0\varepsilon ,\cos {\frac{\alpha _2-\alpha _1}{2}}-c_0\varepsilon \right] . \end{aligned}$$

First, we prove that \(\frac{\partial E}{\partial \mu _2}\ge 0\). It suffices to show that

$$\begin{aligned} \frac{\partial }{\partial \mu _2} \left( \sin {\frac{\alpha _3}{2}}(\sigma _{13}+\sigma _{23})+\left( \mu _2-\mu _1+\sin {\frac{\alpha _2-\alpha _1}{2}}\right) (\sigma _{23}-\sigma _{13}) \right) ^2\ge 0. \end{aligned}$$

Indeed, we have

$$\begin{aligned}&\frac{1}{2}\frac{\partial }{\partial \mu _2} \left( \sin {\frac{\alpha _3}{2}}(\sigma _{13}+\sigma _{23})+\left( \mu _2-\mu _1+\sin {\frac{\alpha _2-\alpha _1}{2}}\right) (\sigma _{23}-\sigma _{13}) \right) ^2\\&\quad =(\sigma _{23}-\sigma _{13})\cdot \left( \sin {\frac{\alpha _3}{2}}(\sigma _{13}+\sigma _{23})+\left( \mu _2-\mu _1+\sin {\frac{\alpha _2-\alpha _1}{2}}\right) (\sigma _{23}-\sigma _{13}) \right) \\&\quad \ge (\sigma _{23}-\sigma _{13})\left( \sin {\frac{\alpha _3}{2}}(\sigma _{13}+\sigma _{23})-\sin {\frac{\alpha _3}{2}}(\sigma _{23}-\sigma _{13}) \right) \\&\quad \ge 2\sigma _{13}\sin {\frac{\alpha _3}{2}}(\sigma _{23}-\sigma _{13})\\&\quad \ge 0, \end{aligned}$$

where we utilized \(\sigma _{23}\ge \sigma _{13}\) and \(\mu _2-\mu _1+\sin \frac{\alpha _2-\alpha _1}{2}\ge -\sin \frac{\alpha _3}{2}\).

Thus we can assume \(\mu _2=0\). Set

$$\begin{aligned} \mu ^*{:}{=}\sin \frac{\alpha _2-\alpha _1}{2}-\mu _1. \end{aligned}$$

By (6) we consider the equivalent minimization problem

$$\begin{aligned} \begin{aligned}&\qquad \min {\ \tilde{E}(\mu ^*,y^*)}, \\ \text { such that }&\mu ^*\in \left[ -\sin {\frac{\alpha _3}{2}}+2c_0\varepsilon ,\sin \frac{\alpha _2-\alpha _1}{2}\right] ,\\&y_*\in \left[ -\cos {\frac{\alpha _3}{2}}+c_0\varepsilon ,\cos {\frac{\alpha _2-\alpha _1}{2}}-c_0\varepsilon \right] , \end{aligned} \end{aligned}$$
(B17)

where

$$\begin{aligned} \tilde{E}(\mu ^*,y^*)&= \left( \left( \sin {\frac{\alpha _3}{2}}(\sin \alpha _1+\sin \alpha _2)+\mu ^*(\sin \alpha _1-\sin \alpha _2)\right) ^2\right. \\&\left. \quad +\left( \left( y^*+\cos {\frac{\alpha _3}{2}}\right) (\sin \alpha _1+\sin \alpha _2)\right) ^2\right) ^{\frac{1}{2}}\\&\quad +\sin \alpha _3\left( \left( \sin \frac{\alpha _2-\alpha _1}{2}-\mu ^*\right) ^2+\left( \cos {\frac{\alpha _2-\alpha _1}{2}}-y^*\right) ^2\right) ^{\frac{1}{2}}. \end{aligned}$$

The objective is to prove that \(\tilde{E}\) obtains its minimal value \(\sin \alpha _1+\sin \alpha _2+\sin \alpha _3\) if and only if \(y^*=\mu ^*=0\).

By (5),

$$\begin{aligned} \sin {\frac{\alpha _1+\alpha _2}{2}}=\sin {\frac{\alpha _3}{2}},\quad \cos {\frac{\alpha _1+\alpha _2}{2}}=-\cos {\frac{\alpha _3}{2}}. \end{aligned}$$

Using this and the Cauchy Schwartz inequality \(\sqrt{a^2+b^2}\sqrt{c^2+d^2}\ge ac+bd\), we estimate

$$\begin{aligned}&\tilde{E}(\mu ^*,y^*)\\&\quad \ge \sin ^2{\frac{\alpha _3}{2}}(\sin \alpha _1+\sin \alpha _2)+\mu ^*\sin \frac{\alpha _3}{2}(\sin \alpha _1-\sin \alpha _2)\\&\qquad +\cos \frac{\alpha _3}{2}\left( y^*+\cos \frac{\alpha _3}{2}\right) (\sin \alpha _1+\sin \alpha _2)\\&\qquad \!+\!\sin \alpha _3\left( \left( \sin \frac{\alpha _2-\alpha _1}{2}-\mu ^*\right) \sin \frac{\alpha _2-\alpha _1}{2}+\left( \cos \frac{\alpha _2-\alpha _1}{2}-y^*\right) \cos \frac{\alpha _2-\alpha _1}{2} \!\right) \\&\quad =\sin \alpha _1+\sin \alpha _2+\sin \alpha _3. \end{aligned}$$

The equality holds if and only if

$$\begin{aligned}&\frac{\sin {\frac{\alpha _3}{2}}(\sin \alpha _1+\sin \alpha _2)+\mu ^*(\sin \alpha _1-\sin \alpha _2)}{\left( y^*+\cos \frac{\alpha _3}{2}\right) (\sin \alpha _1+\sin \alpha _2)}=\frac{\sin \frac{\alpha _3}{2}}{\cos \frac{\alpha _3}{2}}, \end{aligned}$$
(B18)
$$\begin{aligned}&\frac{\sin \frac{\alpha _2-\alpha _1}{2}-\mu ^*}{\cos \frac{\alpha _2-\alpha _1}{2}-y^*}=\frac{\sin \frac{\alpha _2-\alpha _1}{2}}{\cos \frac{\alpha _2-\alpha _1}{2}}. \end{aligned}$$
(B19)

Supposing that \(y^*\ne 0\), then, by (B19),

$$\begin{aligned} \frac{\mu ^*}{y^*}=\frac{\sin \frac{\alpha _2-\alpha _1}{2}}{\cos \frac{\alpha _2-\alpha _1}{2}}. \end{aligned}$$

Substituting this into (B18) implies

$$\begin{aligned}&\frac{\sin \frac{\alpha _2-\alpha _1}{2}(\sin \alpha _1-\sin \alpha _2)}{\cos \frac{\alpha _2-\alpha _1}{2}(\sin \alpha _1+\sin \alpha _2)}=\frac{\sin \frac{\alpha _3}{2}}{\cos \frac{\alpha _3}{2}}\\&\quad \Rightarrow \tan ^2\frac{\alpha _2-\alpha _1}{2}=\tan ^2\frac{\alpha _3}{2}, \end{aligned}$$

which is impossible since \(0\le \frac{\alpha _2-\alpha _1}{2}<\frac{\alpha _3}{2}<\frac{\pi }{2}\). Therefore in order to get the equality it must hold that \(y^*=0\). Then by (B19) \(\mu ^*=0\). The proof is completed.

\(\square \)

Appendix C: The Last Inequality in (84)

The objective is to show

$$\begin{aligned}&( \sigma _{12}+\sigma _{13}+\sigma _{23})^2\\&\quad < \left[ \left( \sin {\frac{\alpha _3}{2}}- \sin {\frac{\alpha _2-\alpha _1}{2}}\right) \sigma _{13} +\left( \sin {\frac{\alpha _3}{2}}+ \sin {\frac{\alpha _2-\alpha _1}{2}}\right) \sigma _{23} \right] ^2\\&\qquad +\left[ (\sigma _{13}+\sigma _{23})\left( \cos {\frac{\alpha _3}{2}}+\cos {\frac{\alpha _2-\alpha _1}{2}}\right) \right] ^2 \end{aligned}$$

Or by (6) equivalently,

$$\begin{aligned} ( \sin {\alpha _1}+\sin {\alpha _2}+\sin {\alpha _3})^2&< \bigg [ \left( \sin {\frac{\alpha _3}{2}}- \sin {\frac{\alpha _2-\alpha _1}{2}}\right) \sin {\alpha _2} \\&\quad +\left( \sin {\frac{\alpha _3}{2}}+ \sin {\frac{\alpha _2-\alpha _1}{2}}\right) \sin {\alpha _1} \bigg ]^2 \\&\quad +\left[ (\sin {\alpha _2}+\sin {\alpha _1})\left( \cos {\frac{\alpha _3}{2}}+\cos {\frac{\alpha _2-\alpha _1}{2}}\right) \right] ^2 \end{aligned}$$

We directly compute

$$\begin{aligned}&\left[ \sin {\frac{\alpha _3}{2}}(\sin \alpha _2+\sin \alpha _1)+\sin {\frac{\alpha _2-\alpha _1}{2}}(\sin \alpha _1-\sin \alpha _2) \right] ^2\\&\qquad +\left[ (\sin \alpha _1+\sin \alpha _2)\left( \cos {\frac{\alpha _3}{2}}+\cos {\frac{\alpha _2-\alpha _1}{2}}\right) \right] ^2-( \sin {\alpha _1}+\sin {\alpha _2}+\sin {\alpha _3})^2\\&\quad =4\left( \sin ^2\frac{\alpha _3}{2}\cos \frac{\alpha _2-\alpha _1}{2}+\sin ^2\frac{\alpha _2-\alpha _1}{2}\cos \frac{\alpha ^3}{2}\right) ^2\\&\qquad +4\sin ^2\frac{\alpha _3}{2}\cos ^2\frac{\alpha _2-\alpha _1}{2}\left( \cos \frac{\alpha _3}{2} +\cos \frac{\alpha _2-\alpha _1}{2}\right) ^2\\&\qquad -4\sin ^2\frac{\alpha _3}{2}\left( \cos \frac{\alpha _3}{2} +\cos \frac{\alpha _2-\alpha _1}{2}\right) ^2\\&\quad = 4\left( \sin ^2\frac{\alpha _3}{2}\cos \frac{\alpha _2-\alpha _1}{2}+\sin ^2\frac{\alpha _2-\alpha _1}{2}\cos \frac{\alpha ^3}{2}\right) ^2\\&\qquad -4\sin ^2\frac{\alpha _3}{2}\sin ^2\frac{\alpha _2-\alpha _1}{2}\left( \cos \frac{\alpha _3}{2} +\cos \frac{\alpha _2-\alpha _1}{2}\right) ^2\\&\quad =4\left( \sin ^2\frac{\alpha _3}{2}-\sin ^2\frac{\alpha _2-\alpha _1}{2}\right) ^2\\&\quad >0. \end{aligned}$$

\(\square \)

Appendix D: Flat Chains and Minimal Partition

We begin with flat chains and then particularize to partitions because it is in this more general setting where the compactness theorem and the monotonicity formula are developed in the literature. Flat chains over a finite coefficient group were introduced by Flemming [15], following Whitney [42, p. 152] and further developed and utilized by White [40, 41].

1.1 D.1 Flat Chains with Coefficients in a Group

Let G be an abelian group with norm \(\vert \cdot \vert \), such that \(\vert g\vert \ge 0 \) with \(\vert g \vert =0\) if and only if \(g=0\), for all \(g\in G\), and \(\vert g+h\vert \le \vert g\vert +\vert h\vert \), for all \(g,h\in G\). Then \((G,\vert \cdot \vert )\) is a metric space and we will assume that it is complete and separable. In our case G will be a finite group.

Fix \(\mathbb {R}^n\) and a compact convex set \(\mathbb {K}\) in \(\mathbb {R}^n\). For each integer \(k\ge 0\), consider the abelian group of all formal finite sums of the form \(\sum g_iP_i\), where \(g_i\in G\) and where \(P_i\) is a k-dimensional oriented compact convex polyhedron in \(\mathbb {K}\). We form the quotient group obtained by identifying gP with \(-g\tilde{P}\), whenever P and \(\tilde{P}\) coincide but have opposite orientations. Also, identify gP and \(gP_1+gP_2\), whenever P can be subdivided into \(P_1\) and \(P_2\). The resulting abelian group \(\mathcal {P}_k(\mathbb {K};G)\) is called the group of polyhedral k-chains on \(\mathbb {K}\) with coefficients in G. Define the boundary homomorphism \(\partial : \mathcal {P}_k\rightarrow \mathcal {P}_{k-1}\) by

$$\begin{aligned} \partial \left( \sum g_iP_i \right) {:}{=}\sum g_i\partial P_i. \end{aligned}$$

Note that any polyhedral k-chain T can be written as a linear combination \(\sum _i g_i[P_i]\) of nonoverlapping polyhedra, that is, polyhedra with disjoint interiors. Then, the (Whitney) flat norm of the chain is defined to be

$$\begin{aligned} W(T)=\inf \limits _{Q}\{\mathbb {M}(T-\partial \Omega )+\mathbb {M}(Q)\}, \end{aligned}$$

where the infimum is over all polyhedral \(k+1\)-chains Q, and \(\mathbb {M}\) (for mass) stands for measure. The flat norm makes \(\mathcal {P}_k(\mathbb {K;G})\) into a metric space. The completion of this metric space is denoted by \(\mathcal {F}_k(\mathbb {K},G)\) and its elements are called flat k-chains in \(\mathbb {K}\) with coefficients in G. By uniform continuity, functionals such as the flat norm and operations such as addition and boundary extend in a unique way from polyhedral chains to flat chains. The mass norm in \(\mathcal {P}_k(\mathbb {K},G)\) extends to a linear semicontinuous functional in \(\mathcal {F}_k(\mathbb {K},G)\).

Suppose that every bounded closed subset of G is compact. A fundamental compactness theorem for flat chains asserts that, given any sequence \(T_i\in \mathcal {F}_k(\mathbb {K},G)\) with \(\mathbb {M}(T_i)\) and \(\mathbb {M}(\partial T_i)\) uniformly bounded, there is a W-convergent subsequence.

1.2 D.2 Flat Chains of Top Dimension

Polyhedral n-chains in \(\mathbb {R}^n\) with compact support can be identified with the set of piecewise-constant functions

$$\begin{aligned} g:\mathbb {R}^n\rightarrow G, \end{aligned}$$

that vanish outside a compact convex set \(\mathbb {K}\). Here, two functions that differ only on a set of measure zero are regarded as the same. ‘Piecewise constant’ means locally constant except along a finite collection of hyperplanes. The identification is as follows. Any such \(T\in \mathcal {F}_k(\mathbb {R}^n;G)\) can be written as

$$\begin{aligned} T=\sum g_i[P_i], \end{aligned}$$

where the \(P_i\)’s are nonoverlapping and inherit their orientations from \(\mathbb {R}^n\). We can associate to T the function

$$\begin{aligned} g:\mathbb {R}^n\rightarrow G,\; \text { with } g(x)={\left\{ \begin{array}{ll} g_i, &{} x \text { is in the interior of }P_i,\\ 0, &{}x\text { is not in the interior of }P_i. \end{array}\right. } \end{aligned}$$

Note that the mass norm of T is equal to the \(L^1\) norm of \(g(\cdot )\). Also, since there are no nonzero \((n+1)\)-chains in \(\mathbb {R}^n\), we see from the definition of W that

$$\begin{aligned} W(T)=\mathbb {M}(T)=\int _{\mathbb {R}^n} \vert g(x) \vert \,\textrm{d}x. \end{aligned}$$

Consequently, the W-completion of the polyhedral chains (that is, the flat n-chains) is isomorphic to the \(L^1\)-completion of the piecewise-constant functions. Thus, the flat n-chains T on \(\mathbb {R}^n\) with compact support can be identified with the \(L^1_{loc}(\mathbb {R}^n;G)\) functions. The flat chains with \( \mathbb {M}(\partial T)<+\infty \) correspond to the sets with finite perimeter (Caccioppoli sets). The BV norm of the function g above gives the perimeter, that is,

$$\begin{aligned} \Vert g\Vert _{BV}=\mathbb {M}(\partial T). \end{aligned}$$

The compactness for flat chains with

$$\begin{aligned} \mathbb {M}(T_n)+\mathbb {M}(\partial T_n)<C \end{aligned}$$

is equivalent in this setup to the compactness of the embedding

$$\begin{aligned} BV(\Omega )\Subset L^1(\Omega ),\quad \text {for}\quad \Omega \text { bounded.} \end{aligned}$$

The lower semicontinuity of \(\mathbb {M}(\partial T)\) with respect to the W-norm is equivalent to the lower semicontinuity of the BV norm with respect to \(L^1\).

1.3 D.3 Minimizing Partitions: The Group of Surface Tension Coefficients

The purpose next is the introduction of an appropriate group G so that for the flat chain \(T=\sum g_iP_i\), where \(P_i=A_i\), with \(A=\{A_i\}\) a partition of U, there holds

(D20)

Here U is an open set, for example \(U=\mathbb {R}^n\), \(V\Subset U\), and

$$\begin{aligned} E(A;V)=\sum \sigma _{ij} \mathbb {M}(I_{ij}\cap V), \quad \text {where}\quad I_{ij}{:}{=}\partial A_i\cap \partial A_j. \end{aligned}$$

The partition A is a minimizing N-partition if given \(V\Subset U\) and any N-parition \(A'\) of U with

$$\begin{aligned} \bigcup \limits _{i=1}^N (A_i\Delta A_i')\Subset V, \end{aligned}$$

we have

$$\begin{aligned} E(A;V)\le E(A';V). \end{aligned}$$

Here \(A_i\Delta A_i'=(A_i\cup A_i')\setminus (A_i\cap A_i')\).

First, assume that

$$\begin{aligned} \sigma _{ik}\le \sigma _{ij}+\sigma _{jk},\quad \text {for all}\quad i,j,k. \end{aligned}$$
(D21)

Let G be the free \(\mathbb {Z}_2\)-module with N generators \(f_1,\ldots ,f_N\) (one for each phase). White [40] defines a norm in this group such that

$$\begin{aligned} \vert f_i-f_j\vert =\sigma _{ij}, \end{aligned}$$

and the \(\mathbb {Z}_2\)-module identifies

$$\begin{aligned} f_{i_1}-f_{j_1}=f_{i_1}+f_{j_1}. \end{aligned}$$

Utilizing this, it is easy to see in calculating \(\partial T\), and \(\mathbb {M}(\partial T)\), that (D20) holds. In this setup, given a partition of U into N measureable sets \(A_1,\ldots ,A_N\), and \(\mathbb {K}\) as above, we associate the flat n-chain

$$\begin{aligned} T=[g]_\mathbb {K}, \end{aligned}$$

where \([\cdot ]_\mathbb {K}\) denotes the isomorphism between \(L^1_{loc}(\mathbb {R}^n,G)\) functions and flat n-chains with compact support, and

$$\begin{aligned} g(x)={\left\{ \begin{array}{ll} f_i, &{} \text {for}\quad x\in A_i\cap \mathbb {K},\\ 0, &{} \text {for}\quad x\not \in A_i\cap \mathbb {K}. \end{array}\right. } \end{aligned}$$

Note that if the \(A_i\)’s have piecewise-smooth boundaries, then (D20) holds. More generally, equation (D20) holds whenever the \(A_i\)’s are Caccioppoli sets, that is, whenever the flat chains have finite mass. Conversely, given any flat n-chain T, we can represent T as

$$\begin{aligned} T=[g]_\mathbb {K}, \end{aligned}$$

where \(g\in L^1(U\cap \mathbb {K}; G)\). We note that in White [40] it is shown that the inequalities (D21) are no real restriction, in the sense that if they are violated, then one can define new coefficients \(\sigma _{ij}^*\) out of the old, so that the infimum of E coincides with the infimum of \(E^*\) (defined by replacing \(\sigma _{ij}\) with \(\sigma _{ij}^*\)). Also, it is noted that (D21) is necessary for E to be linear semicontinuous with respect to the flat norm.

Concerning regularity of the minimizing partition, White [40] states that under strictness of the inequalities (D21), the singular set has dimension at most \(n-2\), and therefore almost everywhere regularity holds. Moreover, he states that for the strongest Allard-type regularity theorem to hold, the strict triangle inequalities are both necessary and sufficient.

1.4 D.4 The Monotonicity Formula

The monotonicity formula holds for k-dimensional mass minimizing flat chains and states that \(\frac{\mathbb {M}(T\arrowvert B_r(x))}{\omega _kr^k}\) is an increasing function of r, where \(\omega _k\) is the volume of the k-dimensional unit ball (p. 43 in White [41]). Hence it also holds for n-dimensional minimizing flat chains that coincide with the minimizing partition.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alikakos, N.D., Geng, Z. On the Triple Junction Problem without Symmetry Hypotheses. Arch Rational Mech Anal 248, 24 (2024). https://doi.org/10.1007/s00205-024-01966-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-024-01966-0

Navigation