Skip to main content
Log in

Anisotropic Regularity of the Free-Boundary Problem in Compressible Ideal Magnetohydrodynamics

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider that 3D free-boundary compressible ideal magnetohydrodynamic (MHD) system under the Rayleigh-Taylor sign condition. This describes the motion of a free-surface perfect conducting fluid in an electro-magnetic field. A local existence and uniqueness result was recently proved by Trakhinin and Wang (Arch Ration Mech Anal 239(2):1131–1176, 2021) by using Nash–Moser iteration. However, that result loses regularity going from data to solution. In this paper, we show that the Nash–Moser iteration scheme in Trakhinin and Wang (2021) can be improved such that the local-in-time smooth solution exists and is unique when the initial data is smooth and satisfies the compatibility condition up to infinite order. Second, we prove the a priori estimates without loss of regularity for the free-boundary compressible MHD system in Lagrangian coordinates in anisotropic Sobolev space, with more regularity tangential to the boundary than in the normal direction. This is based on modified Alinhac good unknowns, which take into account the covariance under the change of coordinates to avoid the derivative loss; full utilization of the cancellation structures of MHD system, to turn normal derivatives into tangential ones; and delicate analysis in anisotropic Sobolev spaces. As a result, we can prove the uniqueness and the continuous dependence on initial data provided the local existence, and a continuation criterion for smooth solution. Finally, we extend the local well-posedness theorem to the case of initial data only satisfying compatibility conditions up to finite order, assuming these can be approximated by data satisfying infinitely many compatibility conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. In the case of a gas, the boundary condition should be \(\rho =0\).

  2. The non-collinearity condition enhaces extra 1/2-order regularity of the free-interface than Taylor sign condtion (1.8). Such a condition originates from the stabilization condition for the current-vortex sheet model.

  3. The domain \(\mathbb {T}^2\times (-1,1)\) is known to be the reference domain. Using a partition of unity, e.g., [12], a general bounded domain can also be treated in the same way. Choosing a reference domain allows us to focus on the real issues and avoid the involved calculation caused by partition ofunity. Indeed, our proof is also applicable to the case that \(\eta _0\) is a general diffeomorphism that has the same regularity of \(v_0\) if we use similar technical modifications as in [24].

  4. Indeed, as stated before Theorem 1.6, it is still unknown how to approximate the given data by a sequence of smooth data satisfying the compatibility conditions up to infinite order. This may be postpone to a future work.

References

  1. Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves. Invent. Math. 198(1), 71–163, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  2. Alinhac, S.: Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels.(French. English summary) [Existence of rarefaction waves for multidimensional hyperbolic quasilinear systems]. Commun. Partial Differ. Equ., 14(2), 173–230, 1989

  3. Alinhac, S., Gérard, P.: Pseudo-differential Operators and the Nash–Moser Theorem. Translated from the 1991 French original by Stephen S. Wilson. American Mathematical Society, Providence, 2007

  4. Chen, P., Ding, S.: Inviscid limit for the free-boundary problems of MHD equations with or without surface tension. arXiv: 1905.13047, preprint, 2019

  5. Chen, G.-Q., Wang, Y.-G.: Existence and stability of compressible current-vortex sheets in three-dimensional magnetohydrodynamics. Arch. Ration. Mech. Anal. 187(3), 369–408, 2008

    MathSciNet  MATH  Google Scholar 

  6. Chen, S.-X.: Initial boundary value problems for quasilinear symmetric hyperbolic systems with characteristic boundary. Translated from Chin. Ann. Math. 3(2), 222–232 (1982). Front. Math. China 2(1), 87–102 2007

  7. Chen, S.-X.: Multidimensional nonlinear systems of conservation laws. Sci. Sin. Math. 43(4), 317–332, 2013 (in Chinese)

    MATH  Google Scholar 

  8. Christodoulou, D., Lindblad, H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 53(12), 1536–1602, 2000

    MathSciNet  MATH  Google Scholar 

  9. Coulombel, J.-F., Morando, A., Secchi, P., Trebeschi, P.: A priori estimates for 3d incompressible current-vortex sheets. Commun. Math. Phys. 311(1), 247–275, 2012

    ADS  MathSciNet  MATH  Google Scholar 

  10. Coutand, D., Hole, J., Shkoller, S.: Well-posedness of the free-boundary compressible 3-D Euler equations with surface tension and the zero surface tension limit. SIAM J. Math. Anal. 45(6), 3690–3767, 2013

    MathSciNet  MATH  Google Scholar 

  11. Coutand, D., Lindblad, H., Shkoller, S.: A priori estimtes for the free-boundary 3D compressible Euler equations in physical vacuum. Commun. Math. Phys. 296(2), 559–587, 2010

    ADS  MATH  Google Scholar 

  12. Coutand, D., Shkoller, S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930, 2007

    MathSciNet  MATH  Google Scholar 

  13. Coutand, D., Shkoller, S.: A simple proof of well-posedness for the free-surface incompressible Euler equations. Discrete Contin. Dyn. Syst. (Ser. S) 3(3), 429–449, 2010

    MathSciNet  MATH  Google Scholar 

  14. Coutand, D., Shkoller, S.: Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum. Arch. Ration. Mech. Anal. 206(2), 515–616, 2012

    MathSciNet  MATH  Google Scholar 

  15. Disconzi, M.M., Luo, C.: On the incompressible limit for the compressible free-boundary Euler equations with surface tension in the case of a liquid. Arch. Ration. Mech. Anal. 237(2), 829–897, 2020

    MathSciNet  MATH  Google Scholar 

  16. Ebin, D.G.: The equations of motion of a perfect fluid with free boundary are not well posed. Commun. Partial Differ. Equ. 12(10), 1175–1201, 1987

    MathSciNet  MATH  Google Scholar 

  17. Ginsberg, D.: A priori estimates for a relativistic liquid with free surface boundary. J. Hyperbolic Differ. Eq. 16(03), 401–442, 2019

    MathSciNet  MATH  Google Scholar 

  18. Ginsberg, D., Lindblad, H.: On the local well-posedness for the relativistic Euler equations for an isolated liquid body. Ann. PDE, to appear, 2022

  19. Ginsberg, D., Lindblad, H., Luo, C.: Local well-posedness for the motion of a compressible, self-gravitating liquid with free surface boundary. Arch. Ration. Mech. Anal. 236(2), 603–733, 2020

    MathSciNet  MATH  Google Scholar 

  20. Goedbloed, H., Keppens, R., Poedts, S.: Magnetohydrodynamics of Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge (2020)

    MATH  Google Scholar 

  21. Gu, X.: Well-posedness of axially symmetric incompressible ideal magnetohydrodynamic equations with vacuum under the non-collinearity condition. Commun. Pure Appl. Anal. 18(2), 569–602, 2019

    MathSciNet  MATH  Google Scholar 

  22. Gu, X.: Well-posedness of axially symmetric incompressible ideal magnetohydrodynamic equations with vacuum under the Rayleigh–Taylor sign condition. arXiv: 1712.02152, preprint, 2017

  23. Gu, X., Luo, C., Zhang, J.: Local well-posedness of the free-boundary incompressible magnetohydrodynamics with surface tension. arxiv: 2105.00596, preprint, 2021

  24. Gu, X., Luo, C., Zhang, J.: Zero surface tension limit of the free-boundary problem in incompressible magnetohydrodynamics. Nonlinearity 35(12), 6349–6398, 2022

    ADS  MathSciNet  MATH  Google Scholar 

  25. Gu, X., Wang, Y.: On the construction of solutions to the free-surface incompressible ideal magnetohydrodynamic equations. J. Math. Pures Appl. 128, 1–41, 2019

    MathSciNet  MATH  Google Scholar 

  26. Guo, B., Zeng, L., Ni, G.: Decay rates for the Viscous Incompressible MHD with and without Surface Tension. Comput. Math. Appl. 77(12), 3224–3249, 2019

    MathSciNet  MATH  Google Scholar 

  27. Hao, C.: Remarks on the free boundary problem of compressible Euler equations in physical vacuum with general initial densities. Discrete Contin. Dyn. Syst. (Ser. B) 20(9), 2885–2931, 2015

    MathSciNet  MATH  Google Scholar 

  28. Hao, C.: On the motion of free interface in ideal incompressible MHD. Arch. Ration. Mech. Anal. 224(2), 515–553, 2017

    MathSciNet  MATH  Google Scholar 

  29. Hao, C., Luo, T.: A priori estimates for free boundary problem of incompressible inviscid magnetohydrodynamic flows. Arch. Ration. Mech. Anal. 212(3), 805–847, 2014

    MathSciNet  MATH  Google Scholar 

  30. Hao, C., Luo, T.: Ill-posedness of free boundary problem of the incompressible ideal MHD. Commun. Math. Phys. 376(1), 259–286, 2020

    ADS  MathSciNet  MATH  Google Scholar 

  31. Hao, C., Luo, T.: Well-posedness for the linearized free boundary problem of incompressible ideal magnetohydrodynamics equations. J. Differ. Equ. 299, 542–601, 2021

    ADS  MathSciNet  MATH  Google Scholar 

  32. Ifrim, M., Tataru, D.: The compressible Euler equations in a physical vacuum: a comprehensive Eulerian approach. arxiv:2007.05668, preprint, 2020.

  33. Jang, J., Masmoudi, N.: Well-posedness of compressible Euler equations in a physical vacuum. Commun. Pure Appl. Math. 68(1), 61–111, 2014

    MathSciNet  MATH  Google Scholar 

  34. Kreiss, H.-O.: Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math. 23(3), 277–298, 1970

    MathSciNet  MATH  Google Scholar 

  35. Lee, D.: Initial value problem for the free boundary magnetohydrodynamics with zero magnetic boundary condition. Commun. Math. Sci. 16(3), 589–615, 2018

    MathSciNet  MATH  Google Scholar 

  36. Lee, D.: Uniform estimate of viscous free-boundary magnetohydrodynamics with zero vacuum magnetic field. SIAM J. Math. Anal. 49(4), 2710–2789, 2017

    MathSciNet  MATH  Google Scholar 

  37. Lindblad, H.: Well-posedness for the linearized motion of an incompressible liquid with free surface boundary. Commun. Pure Appl. Math. 56(2), 153–197, 2003

    MathSciNet  MATH  Google Scholar 

  38. Lindblad, H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162(1), 109–194, 2005

    MathSciNet  MATH  Google Scholar 

  39. Lindblad, H.: Well-posedness for the linearized motion of a compressible liquid with free surface boundary. Commun. Math. Phys. 236(2), 281–310, 2003

    ADS  MathSciNet  MATH  Google Scholar 

  40. Lindblad, H.: Well-posedness for the motion of a compressible liquid with free surface boundary. Commun. Math. Phys. 260(2), 319–392, 2005

    ADS  MathSciNet  MATH  Google Scholar 

  41. Lindblad, H., Luo, C.: A priori estimates for the compressible Euler equations for a liquid with free surface boundary and the incompressible limit. Commun. Pure Appl. Math. 71(7), 1273–1333, 2018

    MathSciNet  MATH  Google Scholar 

  42. Luo, C.: On the motion of a compressible gravity water wave with vorticity. Ann. PDE 4(2), 2506–2576, 2018

    MathSciNet  Google Scholar 

  43. Luo, C., Zhang, J.: A regularity result for the incompressible magnetohydrodynamics equations. with free surface boundary. Nonlinearity 33(4), 1499–1527, 2020

    ADS  MathSciNet  MATH  Google Scholar 

  44. Luo, C., Zhang, J.: A priori estimates for the incompressible free-boundary magnetohydrodynamics equations with surface tension. SIAM J. Math. Anal. 53(2), 2595–2630, 2021

    MathSciNet  MATH  Google Scholar 

  45. Luo, C., Zhang, J.: Local well-posedness for the motion of a compressible gravity water wave with vorticity. J. Differ. Equ. 332, 333–403, 2022

    ADS  MathSciNet  MATH  Google Scholar 

  46. Luo, T., Xin, Z., Zeng, H.: Well-posedness for the motion of physical vacuum of the three-dimensional compressible Euler equations with or without self-gravitation. Arch. Ration. Mech. Anal. 213(3), 763–831, 2014

    MathSciNet  MATH  Google Scholar 

  47. Masmoudi, N., Rousset, F.: Uniform regularity and vanishing viscosity limit for the free surface Navier–Stokes equations. Arch. Ration. Mech. Anal. 223(1), 301–417, 2017

    MathSciNet  MATH  Google Scholar 

  48. Morando, A., Trakhinin, Y., Trebeschi, P.: Well-posedness of the linearized plasma-vacuum interface problem in ideal incompressible MHD. Q. Appl. Math. 72(3), 549–587, 2014

    MathSciNet  MATH  Google Scholar 

  49. Ohno, M., Shirota, T.: On the initial-boundary-value problem for the linearized equations of magnetohydrodynamics. Arch. Ration. Mech. Anal. 144(3), 259–299, 1998

    MathSciNet  MATH  Google Scholar 

  50. Ohno, M., Shizuta, Y., Yanagisawa, T.: The trace theorem on anisotropic Sobolev spaces. Tohoku Math. J. 46(3), 393–401, 1994

    MathSciNet  MATH  Google Scholar 

  51. Padula, M., Solonnikov, V.A.: On the free boundary problem of magnetohydrodynamics. Zap. Nauchn. Semin. POMI 385, 135–186, 2010

    Google Scholar 

  52. Padula, M., Solonnikov, V. A.: On the free boundary problem of magnetohydrodynamics. J. Math. Sci. (N.Y.) 178(3), 313–344, 2010

  53. Secchi, P.: Well-posedness for mixed problems for the equations of ideal magneto-hydrodynamics. Archiv. der. Math. 64(3), 237–245, 1995

    MathSciNet  MATH  Google Scholar 

  54. Secchi, P.: Well-posedness of characteristic symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 134(2), 155–197, 1996

    MathSciNet  MATH  Google Scholar 

  55. Secchi, P.: On the Nash–Moser iteration technique. In: Amann, H., Giga, Y., Kozono, H., Okamoto, H., Yamazaki, M. (eds) Recent Developments of Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics, pp. 443-457. Birkhäuser, Basel 2016

  56. Secchi, P., Trakhinin, Y.: Well-posedness of the plasma-vacuum interface problem. Nonlinearity 27(1), 105–169, 2013

    ADS  MathSciNet  MATH  Google Scholar 

  57. Shatah, J., Zeng, C.: Geometry and a priori estimates for free boundary problems of the Euler’s equation. Commun. Pure Appl. Math. 61(5), 698–744, 2008

    MathSciNet  MATH  Google Scholar 

  58. Shatah, J., Zeng, C.: A priori estimates for fluid interface problems. Commun. Pure Appl. Math. 61(6), 848–876, 2008

    MathSciNet  MATH  Google Scholar 

  59. Shatah, J., Zeng, C.: Local well-posedness for fluid interface problems. Arch. Ration. Mech. Anal. 199(2), 653–705, 2011

    MathSciNet  MATH  Google Scholar 

  60. Sun, Y., Wang, W., Zhang, Z.: Nonlinear stability of the current-vortex sheet to the incompressible MHD equations. Commun. Pure Appl. Math. 71(2), 356–403, 2018

    MathSciNet  MATH  Google Scholar 

  61. Sun, Y., Wang, W., Zhang, Z.: Well-posedness of the plasma-vacuum interface problem for ideal incompressible MHD. Arch. Ration. Mech. Anal. 234(1), 81–113, 2019

    MathSciNet  MATH  Google Scholar 

  62. Trakhinin, Y.: The existence of current-vortex sheets in ideal compressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 191(2), 245–310, 2009

    MathSciNet  MATH  Google Scholar 

  63. Trakhinin, Y.: Local existence for the free boundary problem for nonrelativistic and Relativistic compressible Euler equations with a vacuum boundary condition. Commun. Pure Appl. Math. 62(11), 1551–1594, 2009

    MathSciNet  MATH  Google Scholar 

  64. Trakhinin, Y.: On well-posedness of the plasma-vacuum interface problem: the case of non-elliptic interface symbol. Commun. Pure Appl. Anal. 15(4), 1371–1399, 2016

    MathSciNet  MATH  Google Scholar 

  65. Trakhinin, Y., Wang, T.: Well-posedness of free boundary problem in non-relativistic and relativistic ideal compressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 239(2), 1131–1176, 2021

    MathSciNet  MATH  Google Scholar 

  66. Trakhinin, Y., Wang, T.: Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension. Math. Ann., to appear, 2021

  67. Wang, Y., Xin, Z.: Vanishing viscosity and surface tension limits of incompressible viscous surface waves. SIAM J. Math. Anal. 53(1), 574–648, 2021

    ADS  MathSciNet  MATH  Google Scholar 

  68. Wang, Y., Xin, Z.: Global well-posedness of free interface problems for the incompressible inviscid resistive MHD. Commun. Math. Phys. 388(3), 1323–1401, 2021

    ADS  MathSciNet  MATH  Google Scholar 

  69. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130(1), 39–72, 1997

    ADS  MathSciNet  MATH  Google Scholar 

  70. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12(2), 445–495, 1999

    MathSciNet  MATH  Google Scholar 

  71. Yanagisawa, T., Matsumura, A.: The fixed boundary value problems for the equations of ideal magneto-hydrodynamics with a perfectly conducting wall condition. Commun. Math. Phys. 136(1), 119–140, 1991

    ADS  MATH  Google Scholar 

  72. Zhang. J.: A priori estimates for the free-boundary problem of compressible resistive MHD equations and incompressible limit. arxiv: 1911.04928, preprint, 2019

  73. Zhang. J.: Local well-posedness of the free-boundary problem in compressible resistive magnetohydrodynamics. Calc. Var. Partial Differ. Equ., 62, article no. 124, 2023. https://doi.org/10.1007/s00526-023-02462-1

  74. Zhang, J.: Local well-posedness and incompressible limit of the free-boundary problem in compressible elastodynamics. Arch. Ration. Mech. Anal. 244(3), 599–697, 2022

    MathSciNet  MATH  Google Scholar 

  75. Zhang, P., Zhang, Z.: On the free boundary problem of three-dimensional incompressible Euler equations. Commun. Pure Appl. Math. 61(7), 877–940, 2008

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authours thank the anonymous referees for their comments and suggestions that help us improve the quality of this paper. Hans Lindblad was supported in part by Simons Foundation Collaboration Grant 638955. Junyan Zhang would like to thank Tao Wang and Chenyun Luo for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Lindblad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by J. Shatah.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Construction of Smooth Data Satisfying Compatibility Conditions Up to Infinite Order

Construction of Smooth Data Satisfying Compatibility Conditions Up to Infinite Order

In the appendix, we prove the existence of smooth data satisfying compatibility conditions up to infinite order. Assume \(m\geqq 8\) is an integer and we are given an initial data \((w_0,b_0,P_0)\) satisfying the compatibility conditions up to \((m-1)\)-th order in \(H^m(\Omega )\), where \(P_0\) is the total pressure, while the fluid pressure is denoted by \(p_0=P_0-\frac{1}{2}|b_0|^2\). For simplicity of notations, we assume \(R'(q)/R|_{R=1}=1\).

The initial constraints and compatibility conditions for \((w_0,b_0,P_0)\) are

  • (Compatibility conditions) \(P_{(j)}:=\partial _t^j P|_{t=0}=0\) on \(\Gamma \), \(0\leqq j\leqq m-1\).

  • (Initial constraints) \(\text {div }b_0=0\) in \(\Omega \), \(b_0^3|_{\Gamma }=0\), and the Rayleigh-Taylor sign condition \(-\frac{\partial P_0}{\partial N}\geqq c_0>0\) on \(\Gamma \).

1.1 Compatibility Conditions in Terms of Initial Data

First we express the compatibility conditions in terms of \(w_0,b_0,P_0\). The zero-th order compatibility condition is \(P_0|_{\Gamma }=0\). To express the first-order compatibility condition, we use \(P=p+\frac{1}{2}|b_0|^2\), where p is the fluid pressure, the continuity equation \(\partial _t p+\text {div }v=0\), and \(\partial _t b=b\cdot \nabla v-b\text {div }v\) to get (we omit the coefficient A as it equals to Id at \(t=0\). The appearance of A does not affect the essence of the proof.)

$$\begin{aligned} \text {div }w_0=-|b_0|^2\text {div }w_0+({\bar{b}}_0\cdot \overline{\nabla })w_0\cdot b_0\text { on }\Gamma , \end{aligned}$$
(A.1)

and we define the right side of (A.1) to be the functional \({\mathcal {M}}_{-1}(w_0,b_0)\). Next we take divergence in the momentum equation to get a wave equation of P

$$\begin{aligned} \partial _t^2 P-\Delta P=\partial _t^2(\frac{1}{2}|b|^2)+\nabla _iw^j\nabla _jw^i-\nabla _ib^j\nabla _jb^i,~~P_0|_{\Gamma }=0 \end{aligned}$$
(A.2)

and again use \(\partial _t b=b\cdot \nabla v-b\text {div }v\) and \(\partial _t v\sim (b_0\cdot \partial )b-\nabla P\) to get

$$\begin{aligned} \partial _t^2 P-\Delta P={\mathcal {M}}_0(w_0,b_0,P_0)+{\mathcal {N}}_0(w_0,b_0)~~\text { on }\{t=0\}, \end{aligned}$$

where \({\mathcal {N}}_0(w_0,b_0):=\nabla _iw_0^j\nabla _jw_0^i-\nabla _ib_0^j\nabla _jb_0^i\) and \({\mathcal {M}}_0(w_0,b_0,P_0)\) is defined by

$$\begin{aligned} {\mathcal {M}}_0(w_0,b_0,P_0):=|b_0|^2\Delta P_0-(b_0\cdot \nabla )^2 P_0+(b_0\cdot \nabla )^2b_0\cdot b_0+{\mathcal {R}}_0(w_0,b_0) \end{aligned}$$

and \({\mathcal {R}}_0(w_0,b_0)\) only contains the first-order derivative of \(b_0\) and \(v_0\)

$$\begin{aligned} {\mathcal {R}}_0(w_0,b_0):=P_0(b_0)\left( (\nabla ^{i_1} w_0)(\nabla ^{i_2} w_0)+(\nabla ^{j_1} b_0)(\nabla ^{j_2} b_0)\right) , \end{aligned}$$

where \(P_0(b_0)\) is a polynomial of \(b_0\) only contains cubic and quadratic terms, and \((i_1,i_2,j_1,j_2)=(1,1,0,0)\text { or }(0,0,1,1)\).

We see that the 2nd-order compatibility condition \(P_{(2)}:=\partial _t^2 P|_{t=0}=0\) on \(\Gamma \) is equivalent to (we use \(b_0^3|_{\Gamma }=0\))

$$\begin{aligned} -\Delta P_0= & {} {\mathcal {M}}_0(w_0,b_0,P_0)+{\mathcal {N}}_0(w_0,b_0,P_0)\nonumber \\= & {} |b_0|^2\Delta P_0-({\bar{b}}_0\cdot \overline{\nabla })^2 P_0+({\bar{b}}_0\cdot \overline{\nabla })^2b_0\cdot b_0+{\mathcal {R}}(w_0,b_0) \text { on }\Gamma . \end{aligned}$$
(A.3)

Taking time derivatives in the wave equation above repeatedly we get for \(k \geqq 1\)

$$\begin{aligned} P_{(k+2)}-\Delta P_{(k)}={\mathcal {M}}_k(w_0,b_0,P_0)+{\mathcal {N}}_k(w_0,b_0,P_0)\text { in }\Omega , \end{aligned}$$

where, after long and tedious calculations, the functionals \({\mathcal {M}}_k,{\mathcal {N}}_k\) have the following form for \(r\geqq 1\)

$$\begin{aligned}&k=2r-1,~~{\mathcal {M}}_{2r-1}(w_0,b_0,P_0)\nonumber \\&\quad =-|b_0|^2\Delta ^r\text {div }w_0+({\bar{b}}_0\cdot \overline{\nabla })^2\Delta ^{r-1}\text {div }w_0\nonumber \\&\qquad +\sum _{l=2}^{r+1}\underbrace{b_0^{i_1}\cdots b_0^{i_{2l}}(\nabla ^{2r+1}w_0)}_{<2^{l}\text { terms}}+{\mathcal {R}}_{2r-1}(w_0,b_0,P_0), \end{aligned}$$
(A.4)
$$\begin{aligned}&k=2r,~~{\mathcal {M}}_{2r}(w_0,b_0,P_0)\nonumber \\&\quad =~|b_0|^2\Delta ^{r+1} P_0-({\bar{b}}_0\cdot \overline{\nabla })^2\Delta ^{r}P_0+{\mathcal {R}}_{2r}(w_0,b_0,P_0),\nonumber \\&\qquad +\sum _{l=2}^{r+1}\underbrace{({\bar{b}}_0\cdot \overline{\nabla })^{r+2}(\nabla ^rb_0) b_0^{i_1}\cdots b_0^{i_{2l}}+({\bar{b}}_0\cdot \overline{\nabla })^{2}(\nabla ^{2r} P_0) b_0^{j_1}\cdots b_0^{j_{2l}}}_{<2^{l}\text { terms }}; \end{aligned}$$
(A.5)

and the term \({\mathcal {R}}_k\), where every top-order term has \((k+1)\)-th order derivative, has the following form

$$\begin{aligned} {\mathcal {R}}_k(w_0,b_0,P_0)= & {} P_k(b_0)\left( C^{k}_{i_1\cdots i_m,j_1\cdots j_n, k_1\cdots k_l}(\nabla ^{i_1} w_0)\cdots (\nabla ^{i_m} w_0)(\nabla ^{j_1} b_0)\cdots \right. \\{} & {} \left. \quad (\nabla ^{j_n} b_0)(\nabla ^{k_1} P_0)\cdots (\nabla ^{k_l} P_0)\right) , \end{aligned}$$

where \(P_k(\cdot )\) is a polynomial of its arguments and the lowest power is 4 and the indices above satisfy

$$\begin{aligned} 1\leqq i_1,\cdots , i_m,j_1,\cdots , j_n\leqq k+1, 0\leqq k_1,\cdots , k_l \leqq k+1,\\ i_1+\cdots +i_m+j_1+\cdots +j_n+k_1+\cdots +k_l=k+1. \end{aligned}$$

The term \({\mathcal {N}}_k(w_0,b_0,P_0)\) has the following form

$$\begin{aligned} {\mathcal {N}}_k(w_0,b_0,P_0)=&~P_{k,1}(b_0)(\nabla ^{1+2\lfloor \frac{k}{2}\rfloor }w_0)(\nabla w_0)+P_{k,2}(b_0)(\nabla ^{2\lceil \frac{k}{2}\rceil } P_0)(\nabla w_0)\\&+P_{k,0}(b_0)(\nabla ^{k+1}b_0)(\nabla w_0)\\&+P'_k(b_0)D^{k}_{i_1\cdots i_m,j_1\cdots j_n, k_1\cdots k_l}\\&\left( (\nabla ^{i_1} w_0)\cdots (\nabla ^{i_m} w_0)(\nabla ^{j_1} b_0)\cdots (\nabla ^{j_n} b_0)(\nabla ^{k_1} P_0)\cdots (\nabla ^{k_l} P_0)\right) , \end{aligned}$$

where \(P_{k,1}(\cdot ), P_{k,2}(\cdot ),P_k'(\cdot )\) are polynomials of their arguments and \(P_{k,0}(\cdot )\) is a polynomial of its arguments and the lowest power is 2. The indices above satisfy

$$\begin{aligned} 1\leqq i_1,\cdots , i_m,j_1,\cdots , j_n\leqq k, 0\leqq k_1,\cdots , k_l \leqq k,\\ i_1+\cdots +i_m+j_1+\cdots +j_n+k_1+\cdots +k_l=k+1. \end{aligned}$$

So the k-th compatibility condition can be equivalently written as

$$\begin{aligned} k&=2r+1,~~\Delta ^r\text {div }w_0=\sum _{j=0}^{r}\Delta ^j({\mathcal {M}}_{2r-1-2j}(w_0,b_0,P_0)\nonumber \\&\quad +{\mathcal {N}}_{2r-1-2j}(w_0,b_0,P_0))\text { on }\Gamma , \end{aligned}$$
(A.6)
$$\begin{aligned} k&=2r,~~-\Delta ^r P_0=\sum _{j=0}^{r-1}\Delta ^j({\mathcal {M}}_{2r-2-2j}(w_0,b_0,P_0)\nonumber \\&\quad +{\mathcal {N}}_{2r-2-2j}(w_0,b_0,P_0))\text { on }\Gamma , \end{aligned}$$
(A.7)

where \({\mathcal {M}}_{-1}(w_0,b_0):=|b_0|^2\text {div }w_0-(b_0\cdot \nabla )w_0\cdot b_0\) and \({\mathcal {N}}_{-1}:=0\).

1.2 Regularization of the Given Data and Recovery of Compatibility Conditions

To construct a smooth data satisfying the compatibility conditions up to infinite order, the first step is to regularize the given data such that we get smooth functions. By the standard approximation of Sobolev function, we know for any given \(\varepsilon >0\), there exists \((w_0^\varepsilon ,b_0^\varepsilon ,P_0^\varepsilon )\in C^{\infty }(\Omega )\) such that

$$\begin{aligned} \Vert w_0^\varepsilon -w_0,b_0^\varepsilon -b_0,P_0^\varepsilon -P_0\Vert _s<\varepsilon . \end{aligned}$$

However, such smooth approximation does not preserve the boundary conditions, even for the vanishing boundary conditions for \(P_0\) and \(b_0^3\). So we need to recover the compatibility conditions up to the same order as the given data.

From now on, we assume

  • \(m=8\), that is, the given data satisfies the compatibility conditions (A.6)–(A.7) up to 7-th order. This corresponds to the minimal requirement in Theorem 1.3.

  • \(\Vert b_0\Vert _{L^{\infty }({{\bar{\Omega }}})}<\delta _0<1\) where \(\delta _0\) is a suitably small number to be determined: to absorb the terms containing \((k+2)\)-th order derivative arising in \({\mathcal {M}}_k\). Note that we do not need \(\Vert b_0\Vert _{L^{\infty }({{\bar{\Omega }}})}\) to be arbitrarily small in the proof.

1.2.1 Recovering the Initial Constraints

The new data should also satisfy the initial constraints: divergence-free condition of magnetic field, vanishing normal component of magnetic field on the boundary and the Rayleigh-Taylor sign condition. The Rayleigh-Taylor sign condition still holds for \(P_0^\varepsilon \), as \(-\partial _3P_0^\varepsilon \) is just a small perturbation of \(-\partial _3 P_0\). We then modify \(b_0^\varepsilon \). First, we introduce \({\tilde{b}}_0^\varepsilon \) defined by

$$\begin{aligned} {\tilde{b}}_0^{\varepsilon ,1}=b_0^{\varepsilon ,1},~~{\tilde{b}}_0^{\varepsilon ,2}=b_0^{\varepsilon ,2};~~-\Delta {\tilde{b}}_0^{\varepsilon ,3}=-\Delta b_0^{\varepsilon ,3}\text { in }\Omega ,~{\tilde{b}}_0^{\varepsilon ,3}=0\text { on }\Gamma , \end{aligned}$$
(A.8)

and then \({\tilde{b}}_0^\varepsilon \in C^{\infty }(\Omega )\) and the elliptic estimates imply \(\Vert {\tilde{b}}_0^\varepsilon -b_0\Vert _s\leqq \Vert b_0^\varepsilon -b_0\Vert _s+|0-0|_{s-0.5}=O(\varepsilon )\). Next, we recover the divergence-free condition by introducing \({{\textbf {b}}}_0^\varepsilon :={\tilde{b}}_0^\varepsilon +\nabla \varphi \) with \(\varphi \) determined by

$$\begin{aligned} -\Delta \varphi =\text {div }{\tilde{b}}_0^\varepsilon \text { in }\Omega ,~\partial _3\varphi =0\text { on }\Gamma . \end{aligned}$$
(A.9)

With this modification, we now have \(\text {div }{{\textbf {b}}}_0^\varepsilon =\text {div }{\tilde{b}}_0^\varepsilon +\Delta \varphi =0\) in \(\Omega \), and \({{\textbf {b}}}_0^3|_{\Gamma }=0\) still holds thanks to the Neumann boundary condition \(\partial _3\varphi =0\text { on }\Gamma \). So, \({{\textbf {b}}}_0^\varepsilon \) is the desired magnetic field that we need, and it still satisfies a smallness assumption \(\Vert {{\textbf {b}}}_0\Vert _{L^{\infty }({\bar{\Omega }})}<2\delta _0\). We’ll drop \(\varepsilon \) in \({{\textbf {b}}}_0\) for the sake of clean notations.

1.2.2 Recovering the Compatibility Conditions Up to \((m-1)\)-th Order

Next we focus on the modification of \(w_0^\varepsilon ,P_0^\varepsilon \). After the regularization, we don’t even know if \(P_0^\varepsilon =0\) on \(\Gamma \) holds or not. So the first step is to recover the 0-th order compatibility condition \(P_0|_\Gamma =0\). We define \({{\textbf {P}}}_0^{(1)}\) by

$$\begin{aligned} -\Delta {{\textbf {P}}}_0^{(1)}=-\Delta P_0^\varepsilon \text { in }\Omega ,~~{{\textbf {P}}}_0^{(1)}=0\text { on }\Gamma . \end{aligned}$$
(A.10)

Since \(P_0|_{\Gamma }=0\), we know

$$\begin{aligned} \Vert {{\textbf {P}}}_0^{(1)}-P_0\Vert _s\leqq \Vert P_0^\varepsilon -P_0\Vert _s+|0-0|_{s-0.5}=O(\varepsilon ). \end{aligned}$$

Next we define \({{\textbf {w}}}_0^{(1)}\) to be the following function such that \(({{\textbf {w}}}_0^{(1)},{{\textbf {b}}}_0,{{\textbf {P}}}_0^{(1)})\) satisfies the compatibility condition up to first order: \({{\textbf {w}}}_0^{(1),1}=w_0^{\varepsilon , 1},~{{\textbf {w}}}_0^{(1),2}=w_0^{\varepsilon ,2}\) and \({{\textbf {w}}}_0^{(1),3}\) is determined by the bi-harmonic system

$$\begin{aligned} {\left\{ \begin{array}{ll} \Delta ^2{{\textbf {w}}}_0^{(1),3}=\Delta ^2w_0^{\varepsilon ,3}~~&{}\text { in }\Omega ,\\ {{\textbf {w}}}_0^{(1),3}=w_0^{\varepsilon ,3},~~\partial _3{{\textbf {w}}}_0^{(1),3}=-\overline{\partial }{}_1 w_0^{\varepsilon ,1}-\overline{\partial }{}_2 w_0^{\varepsilon ,2}+{\mathcal {M}}_{-1}({{\textbf {w}}}_0^{(1)},{{\textbf {b}}}_0)~~&{}\text { on }\Gamma , \end{array}\right. }\nonumber \\ \end{aligned}$$
(A.11)

where \({\mathcal {M}}_{-1}({{\textbf {w}}}_0^{(1)},{{\textbf {b}}}_0^{(1)})\) is given by (A.1). Note that the second boundary contidition only involves \(\partial _3{{\textbf {w}}}_0^{(1)}\) because the tangential components are the same of \(w_0^\varepsilon \). So the elliptic estimates give us

$$\begin{aligned} \begin{aligned} \Vert {{\textbf {w}}}_0^{(1)}-w_0\Vert _s\lesssim&~\Vert \Delta ^2w_0^\varepsilon -\Delta ^2 w_0\Vert _{s-4}+|w_0^\varepsilon -w_0|_{s-0.5}+|\partial _3{{\textbf {w}}}_0^{(1)}-\partial _3 w_0|_{s-1.5}\\ \lesssim&~O(\varepsilon )+|b_0|_{L^{\infty }}^2|\nabla {{\textbf {w}}}_0^{(1)}-\nabla w_0|_{s-1.5}, \end{aligned}\nonumber \\ \end{aligned}$$
(A.12)

where the last term can be absorbed by the left side if we pick \(\delta _0\) sufficiently small. Therefore, by the second boundary condition, we know \(({{\textbf {w}}}_0^{(1)},{{\textbf {b}}}_0,{{\textbf {P}}}_0^{(1)})\) satisfies the compatibility condition up to first order.

Again, we construct \({{\textbf {P}}}_0^{(2)}\) such that \(({{\textbf {w}}}_0^{(1)},{{\textbf {b}}}_0,{{\textbf {P}}}_0^{(2)})\) satisfies the compatibility condition (A.7) up to 2nd order. The new pressure is defined by the poly-harmonic system

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta ^3 {{\textbf {P}}}_0^{(2)}=-\Delta ^3 {{\textbf {P}}}_0^{(1)}~~&{}\text { in }\Omega ,\\ {{\textbf {P}}}_0^{(2)}={{\textbf {P}}}_0^{(1)}=0,~~\partial _3{{\textbf {P}}}_0^{(2)}=\partial _3{{\textbf {P}}}_0^{(1)}~~&{}\text { on }\Gamma ,\\ -\Delta {{\textbf {P}}}_0^{(2)}={\mathcal {M}}_0({{\textbf {w}}}_0^{(1)},{{\textbf {b}}}_0,{\mathcal {P}}^{(1)})+{\mathcal {N}}_0({{\textbf {w}}}_0^{(1)},{{\textbf {b}}}_0)~~&{}\text { on }\Gamma , \end{array}\right. } \end{aligned}$$
(A.13)

and thus

$$\begin{aligned} \begin{aligned} \Vert {{\textbf {P}}}_0^{(2)}-P_0\Vert _s\lesssim&~\Vert \Delta ^3{{\textbf {P}}}_0^{(1)}-\Delta ^3 P_0\Vert _{s-6}+|\partial _3{{\textbf {P}}}_0^{(1)}-\partial _3 P_0|_{s-1.5}\\&+|{\mathcal {M}}_0({{\textbf {w}}}_0^{(1)},{{\textbf {b}}}_0,\Vert {\textbf{Q}}_{(m+7)}^{(m-1)}\Vert _0+\Vert {\textbf{Q}}_{(m+6)}^{(m-1)}\Vert _1^{(1)})\\&+{\mathcal {M}}_0({{\textbf {w}}}_0^{(1)},{{\textbf {b}}}_0)-{\mathcal {M}}_0(w_0,b_0,P_0)-{\mathcal {N}}_0(w_0,b_0)|_{s-2.5}\\ \lesssim&~O(\varepsilon )+|b_0|_{L^{\infty }}^2|\partial _3^2({{\textbf {P}}}_0^{(2)}-P_0)|_{s-2.5}, \end{aligned} \end{aligned}$$
(A.14)

where the last term is again absorbed by the left side if we choose \(|b_0|\leqq \delta _0\) to be suitably small. It should also be noted that, \({\mathcal {M}}_{k}\) also has other terms containing \((k+2)\)-th order derivative, but there are at least two derivatives appearing as \(({\bar{b}}_0\cdot \overline{\nabla })\), and thus we can replace \({{\textbf {P}}}_0^{(2)}\) with \({{\textbf {P}}}_0^{(1)}\) using the remaining boundary conditions.

Next we construct \({{\textbf {w}}}_0^{(2)}\) via the following system such that \(({{\textbf {w}}}_0^{(2)},{{\textbf {b}}}_0,{{\textbf {P}}}_0^{(2)})\) satisfies the compatibility condition (A.6) up to 3rd order.

$$\begin{aligned} {\left\{ \begin{array}{ll} \Delta ^4{{\textbf {w}}}_0^{(2),3}=\Delta ^4{{\textbf {w}}}_0^{(1),3}~~&{}\text { in }\Omega ,\\ \partial _3^j{{\textbf {w}}}_0^{(2),3}=\partial _3^j{{\textbf {w}}}_0^{(1),3},(0\leqq j\leqq 2)~~&{}\text { on }\Gamma \\ \Delta \text {div }{{\textbf {w}}}_0^{(2)}={\mathcal {M}}_1({{\textbf {w}}}_0^{(2)},{{\textbf {b}}}_0,{{\textbf {P}}}_0^{(2)})\\ \quad +{\mathcal {N}}_1({{\textbf {w}}}_0^{(2)},{{\textbf {b}}}_0,{{\textbf {P}}}_0^{(2)})+\Delta {\mathcal {M}}_{-1}({{\textbf {w}}}_0^{(1)},{{\textbf {b}}}_0)~~&{}\text { on }\Gamma , \end{array}\right. } \end{aligned}$$
(A.15)

and similarly as above we can get

$$\begin{aligned} \begin{aligned} \Vert {{\textbf {w}}}_0^{(2)}-w_0\Vert _s\lesssim&~\Vert \Delta ^4{{\textbf {w}}}_0^{(1)}-\Delta ^4 w_0\Vert _{s-8}+\sum _{j=0}^2|\partial _3^j{{\textbf {w}}}_0^{(1)}-\partial _3^jw_0|_{s-j-0.5}\\&+|({\mathcal {M}}_1+{\mathcal {N}}_1+\Delta {\mathcal {M}}_{-1})({{\textbf {w}}}_0^{(1)},{{\textbf {b}}}_0,{{\textbf {P}}}_0^{(2)})\\&-({\mathcal {M}}_1+{\mathcal {N}}_1+\Delta {\mathcal {M}}_{-1})(w_0,b_0,P_0)|_{s-3.5}\\ \lesssim&~O(\varepsilon )+|b_0|_{L^{\infty }}^2|\partial _3^3({{\textbf {w}}}_0^{(2)}-w_0)|_{s-3.5}, \end{aligned} \end{aligned}$$
(A.16)

where the last term is again absorbed by the left side if we choose \(|b_0|\leqq \delta _0\) to be suitably small.

So, we can repeat the above procedures such that \({{\textbf {P}}}_0^{(m)}\) is determined by the poly-harmonic equation \(\Delta ^{2m-1}{{\textbf {P}}}_0^{(m)}=\Delta ^{2m-1}{{\textbf {P}}}_0^{(m-1)}\) in \(\Omega \) equipped with the boundary conditions \(\partial _3^j{{\textbf {P}}}_0^{(m)}=\partial _3^j{{\textbf {P}}}_0^{(m-1)}\) on \(\Gamma \) for \(0\leqq j\leqq 2\,m-3\) and the compatibility condition (A.7) for the case \(k=2\,m-2\) with \((w_0,b_0,P_0)\) replaced by \(({{\textbf {w}}}_0^{(m-1)},{{\textbf {b}}}_0,{{\textbf {P}}}_0^{(m)})\).

Similarly, \({{\textbf {w}}}_0^{(m)}\) is determined by \({{\textbf {w}}}_0^{(m),1,2}={{\textbf {w}}}_0^{(m-1),1,2}\) and \(\Delta ^{2m}{{\textbf {w}}}_0^{(m),3}=\Delta ^{2m}{{\textbf {w}}}_0^{(m-1),3}\) in \(\Omega \) equipped with the boundary conditions \(\partial _3^j{{\textbf {w}}}_0^{(m),3}=\partial _3^j{{\textbf {w}}}_0^{(m-1),3}\) on \(\Gamma \) for \(0\leqq j\leqq 2\,m-2\) and the compatibility condition (A.6) for the case \(k=2\,m-1\) with \((w_0,b_0,P_0)\) replaced by \(({{\textbf {w}}}_0^{(m)},{{\textbf {b}}}_0,{{\textbf {P}}}_0^{(m)})\).

Since the given rough data \((w_0,b_0,P_0)\) satisfies the compatibility conditions up to 7-th order, we stop the above procedure after we get \(({{\textbf {w}}}_0^{(4)},{{\textbf {b}}}_0,{{\textbf {P}}}_0^{(4)})\) which is a smooth data and also satisfies the compatibility conditions up to 7-th order. We rename this smooth data to be \(({{\textbf {v}}}_0,{{\textbf {b}}}_0,{{\textbf {Q}}}_0)\). For any given \(\varepsilon >0\), we construct a smooth data \(({{\textbf {v}}}_0,{{\textbf {b}}}_0,{{\textbf {Q}}}_0)\) that satisfies the compatibility conditions up to the same order as the given rough data \((w_0,b_0,P_0)\) and has the following approximation

$$\begin{aligned} \Vert {{\textbf {v}}}_0-w_0\Vert _8+\Vert {{\textbf {b}}}_0-b_0\Vert _8+\Vert {{\textbf {Q}}}_0-P_0\Vert _8=O(\varepsilon ). \end{aligned}$$
(A.17)

1.3 Extend the Compatibility Conditions Up to Infinite Order

1.3.1 Formal Constructions

We then try to extend the initial data such that the compatibility conditions are fulfilled up to infinite order. First we briefly state some formal construction. Recall in A, for a given data \((w_0,b_0,P_0)\), the corresonding solution satisfies the wave equation

$$\begin{aligned} \partial _t^2P-\Delta _b P={\mathcal {M}}_0(v,b,P)+{\mathcal {N}}_0(v,b),~~\Delta _b:=(1+|b|^2)\Delta -(b\cdot \partial )^2, \end{aligned}$$

and \({\mathcal {M}}_0(v,b,P):=(b_0\cdot \partial )^2b\cdot b+{\mathcal {R}}(v,b)\) where \({\mathcal {R}}\) only contains the first-order derivatives of bv. So if we start with an irrotational velocity \(w_0=\nabla \psi \) and define \(P_{(-1)}:=-\psi \), then since \(P=p+\frac{1}{2}|b|^2\) we have

$$\begin{aligned} \partial _t P= & {} \partial _tp+b\cdot \partial _t b=-\text {div }w+b\cdot ((b\cdot \partial ) w-b\text {div }w)\\= & {} -(1+|b|^2)\text {div }w+(b\cdot \partial ) w\cdot b, \end{aligned}$$

which then gives, after restricting it to \(\{t=0\}\)

$$\begin{aligned} -\Delta _bP_{(-1)}=-P_{(1)}+(b_0\cdot \partial )\nabla \psi \cdot b_0, \end{aligned}$$

where the right side only depends on the given data of velocity and magnetic field. Taking more time derivatives and setting \(t=0\) yields an infinite elliptic system of the form

$$\begin{aligned} -\Delta _{{{\textbf {b}}}_0}P_{(k)}=-P_{(k+2)}+{\mathcal {N}}_{k}'(P_{(-1)},\ldots , P_{(k-1)}),~~k\geqq -1, \end{aligned}$$

where \({\mathcal {N}}_k'\) is a functional that only depends on the derivatives of its arguments and \(b_0\) up to a certain order. This system has similar structure as in [40, Lemma 16.1] and thus can be solved in a similar manner. The only difference comes from the appearance of magnetic field, but \((b_0\cdot \partial )\) is a tangential derivatiev and we can pick suitable \(b_0\) such that its normal component vanishes in a neighborhood of the boundary.

1.3.2 Full Construction Procedure

For specific calculations, we now define the desired smooth data \(({{\textbf {v}}}_0^{\infty },{{\textbf {b}}}_0^\infty ,{{\textbf {Q}}}_0^\infty )\) by

$$\begin{aligned} {{\textbf {v}}}_0^{\infty }:={{\textbf {v}}}_0-\nabla {\textbf{Q}}_{(-1)}^{\infty },~~{{\textbf {b}}}_0^\infty :={{\textbf {b}}}_0. \end{aligned}$$
(A.18)

And after a long and tedious calculation, we find \({{\textbf {Q}}}_0^\infty \) is determined by the following infinite elliptic system in \(\Omega \), where \(\lambda :=1+|{{\textbf {b}}}_0|^2\).

$$\begin{aligned} -\lambda \Delta {\textbf{Q}}_{-1}^{\infty }=&-({\textbf{Q}}_{(1)}^{\infty }-{\textbf{Q}}_{(1)})-({{\textbf {b}}}_0\cdot \nabla )^2 {\textbf{Q}}_{-1}^{\infty }+{\mathcal {N}}'_{-1}({{\textbf {b}}}_0,{\textbf{Q}}_{-1}^{\infty }) \end{aligned}$$
(A.19)
$$\begin{aligned} -\lambda \Delta {\textbf{Q}}_0^{\infty }=&-{\textbf{Q}}_{(2)}^{\infty }-({{\textbf {b}}}_0\cdot \nabla )^2 {\textbf{Q}}_{0}^{\infty }+({{\textbf {b}}}_0\cdot \nabla )^2{{\textbf {b}}}_0\cdot {{\textbf {b}}}_0+{\mathcal {N}}'_{0}({{\textbf {b}}}_0,{{\textbf {v}}}_0^{\infty },{\textbf{Q}}_{-1}^{\infty }) \end{aligned}$$
(A.20)
$$\begin{aligned} -\lambda \Delta {\textbf{Q}}_{(1)}^{\infty }=&-{\textbf{Q}}_{(3)}^{\infty }-({{\textbf {b}}}_0\cdot \nabla )^2 {\textbf{Q}}_{1}^{\infty }+({{\textbf {b}}}_0\cdot \nabla )^3{{\textbf {v}}}_0^{\infty }\cdot {{\textbf {b}}}_0\nonumber \\&\quad -|{{\textbf {b}}}_0|^2({{\textbf {b}}}_0\cdot \nabla )^2(\nabla \cdot {{\textbf {v}}}_0^{\infty })+{\mathcal {N}}'_{1}({{\textbf {b}}}_0,{{\textbf {v}}}_0^{\infty },{\textbf{Q}}_{-1}^{\infty },{\textbf{Q}}_0^{\infty }), \end{aligned}$$
(A.21)
$$\begin{aligned} -\lambda \Delta {\textbf{Q}}_{(2)}^{\infty }=&-{\textbf{Q}}_{(4)}^{\infty }-({{\textbf {b}}}_0\cdot \nabla )^2\Delta {\textbf{Q}}_{0}^{\infty }+{\mathcal {N}}'_{2}({{\textbf {b}}}_0,{{\textbf {v}}}_0^{\infty },{\textbf{Q}}_{-1}^{\infty },{\textbf{Q}}_0^{\infty },{\textbf{Q}}_{(1)}^{\infty }) \end{aligned}$$
(A.22)

and for \(k\geqq 2\)

$$\begin{aligned} -\lambda \Delta {\textbf{Q}}_{(k)}^{\infty }=&-{\textbf{Q}}_{(k+2)}^{\infty }-({{\textbf {b}}}_0\cdot \nabla )^2\Delta {\textbf{Q}}_{(k-2)}^{\infty }\nonumber \\ {}&\quad +{\mathcal {N}}'_{k}({{\textbf {b}}}_0,{{\textbf {v}}}_0^{\infty },{\textbf{Q}}_{-1}^{\infty },{\textbf{Q}}_0^{\infty },{\textbf{Q}}_{(1)}^{\infty },\cdots ,{\textbf{Q}}_{(k-1)}^{\infty }), \end{aligned}$$
(A.23)

with vanishing boundary conditions for each \({\textbf{Q}}_{(k)}\). These \({\mathcal {N}}_k'\)’s have the following structure

$$\begin{aligned} \begin{aligned}&{\mathcal {N}}'_k({{\textbf {v}}}_0^\infty ,{{\textbf {b}}}_0,{\textbf{Q}}^\infty _{(-1)},\cdots ,{\textbf{Q}}^{(\infty )}_{(k-1)})\\&\quad =P({{\textbf {b}}}_0)C^{k;m_1\cdots m_r}_{i_1\cdots i_m,j_1\cdots j_n, k_1\cdots k_r}\left( (\nabla ^{i_1} {{\textbf {v}}}_0^{\infty })\cdots (\nabla ^{i_m} {{\textbf {v}}}_0^{\infty })(\nabla ^{j_1} {{\textbf {b}}}_0)\cdots \right. \\&\left. \qquad (\nabla ^{j_n} {{\textbf {b}}}_0)(\nabla ^{k_1} {\textbf{Q}}_{(m_1)})\cdots (\nabla ^{k_r} {\textbf{Q}}_{(m_l)})\right) , \end{aligned} \end{aligned}$$
(A.24)

where the indices satisfy

$$\begin{aligned} i_1+\ldots +i_m+j_1+\ldots +j_n+(k_1+m_1)+\ldots +(k_r+m_r)=k+2,\\ 1\leqq i_1,\ldots , i_m,j_1,\ldots ,j_m,k_1,\ldots ,k_r\leqq k+1,\\ -1\leqq m_1,\ldots , m_r\leqq k-1,~1\leqq k_1+m_1, \ldots , k_r+m_r\leqq k+1. \end{aligned}$$

Remark

Note that (A.22) is derived from taking two time derivatives in (A.20). On can also In fact, taking two time derivatives in (A.20), we know the right side has top-order terms \(({{\textbf {b}}}_0\cdot \nabla )^2 {\textbf{Q}}_{2}-({{\textbf {b}}}_0\cdot \nabla )^2{\textbf{b}}_2\cdot {{\textbf {b}}}_0\). For the latter term \(({{\textbf {b}}}_0\cdot \nabla )^2{\textbf{b}}_2\cdot {{\textbf {b}}}_0\), we recall that \({\textbf{Q}}={\textbf{q}}+\frac{1}{2}|{{\textbf {b}}}_0|^2\). Taking one time derivative and using continuity equation, we get \({\textbf{Q}}_{(1)}=-\text {div }{{\textbf {v}}}_0+{\textbf{b}}_1\cdot {{\textbf {b}}}_0\). Taking one more time derivative and using the momentum equation \({\textbf{v}}_1=({{\textbf {b}}}_0\cdot \nabla ){{\textbf {b}}}_0-\nabla {\textbf{Q}}_0\), we get \(\text {div }{\textbf{v}}_1=\text {div }(-\nabla {\textbf{Q}}_0+({{\textbf {b}}}_0\cdot \nabla ){{\textbf {b}}}_0)\). Using \(\text {div }{{\textbf {b}}}_0=0\) we know \(\text {div }({{\textbf {b}}}_0\cdot \nabla ){{\textbf {b}}}_0\) is of lower order. So we have \({\textbf{Q}}_{(2)}\sim \Delta {\textbf{Q}}_0+{\textbf{b}}_2\cdot {{\textbf {b}}}_0\), and thus

$$\begin{aligned} ({{\textbf {b}}}_0\cdot \nabla )^2 {\textbf{Q}}_{2}-({{\textbf {b}}}_0\cdot \nabla )^2{\textbf{b}}_2\cdot {{\textbf {b}}}_0=({{\textbf {b}}}_0\cdot \nabla )^2\Delta {\textbf{Q}}_0+\text { lower order terms.} \end{aligned}$$

We choose to write in this form because it makes equations shorter. Alternatively one can differentiate (A.21) in time variable again and again to get the form \(-\Delta _{{{\textbf {b}}}_0}{\textbf{Q}}_{(k)}^\infty =-{\textbf{Q}}_{(k+2)}^\infty +{\mathcal {M}}_k'({{\textbf {b}}}_0^\infty ,{\textbf{Q}}_{(-1)},\ldots ,{\textbf{Q}}_{(k-1)})+{\mathcal {N}}'_k({{\textbf {b}}}_0^\infty ,{\textbf{Q}}_{(-1)},\ldots ,{\textbf{Q}}_{(k-1)})\) where \(\Delta _{{{\textbf {b}}}_0}:=(1+|{{\textbf {b}}}_0|^2)\Delta -({{\textbf {b}}}_0\cdot \nabla )^2\), and \({\mathcal {M}}_k'\) denotes the terms containing \((k+2)\)-th order derivative.

This elliptic system has a parallel structure as [40, (16.11)]. Following [40, Lemma 16.2], we impose the system with boundary conditions

$$\begin{aligned} {\textbf{Q}}_{(k)}^\infty |_{\Gamma }={\textbf{Q}}_{0,k},~~-\nabla _N{\textbf{Q}}_{(k)}^\infty |_{\Gamma }={\textbf{Q}}_{1,k},~~k\geqq -1. \end{aligned}$$

Then the system has a formal power series in the distance to the boundary

$$\begin{aligned} \overline{{\textbf{Q}}}_{(k)}(r,\omega )\sim \sum {\textbf{Q}}_{n,k}(\omega )\frac{(1-r)^n}{n!}, \end{aligned}$$

where r is the distance to the boundary and \(\omega \) is the angular variable. Let \(0\leqq \chi (\cdot )\leqq 1\) be a smooth bump function on \(\mathbb {R}\) that equals to 1 in \([-1,1]\) and vanishes outside \([-2,2]\). Then, by [40, Lemma 16.2], there exist \(\varepsilon _{k,n}\) such that

$$\begin{aligned} \overline{{\textbf{Q}}}_{(k)}(r,\omega )=\sum \chi \left( \frac{1-r}{\varepsilon _{k,n}}\right) {\textbf{Q}}_{n,k}(\omega )\frac{(1-r)^n}{n!}, \end{aligned}$$

such that the above elliptic system holds to infinite order on the boundary. Note that \(({{\textbf {b}}}_0\cdot \nabla )\) is tangential on the boundary and \({{\textbf {b}}}_0\) has smallness assumption, so the extra terms involving \({{\textbf {b}}}_0\) will not affect the convergence of the power series.

Now let \(({\tilde{{{\textbf {v}}}_0}},{{\textbf {b}}}_0,{\tilde{{{\textbf {Q}}}_0}})\) are functions that vanish to infinite order on the boundary. Define

$$\begin{aligned} {{\textbf {w}}}_0^{\infty }&:={\tilde{{{\textbf {v}}}_0}}-\nabla \overline{{\textbf{Q}}}_{(-1)},~{{\textbf {P}}}_0^\infty :={\tilde{{{\textbf {Q}}}_0}}+\overline{{\textbf{Q}}}_0,\\ {\textbf{P}}_{(1)}&:=-(1+|{{\textbf {b}}}_0|^2)(\text {div }{\tilde{{{\textbf {v}}}_0}}+\Delta \overline{{\textbf{Q}}}_{(-1)})+({{\textbf {b}}}_0\cdot \nabla ){{\textbf {w}}}_0^{\infty }\cdot {{\textbf {b}}}_0, \end{aligned}$$

where \(\overline{{\textbf{Q}}}_0,\overline{{\textbf{Q}}}_{(-1)}\) are given by the above construction. Then inductively one can show that \({\textbf{P}}_{(k)}^\infty ={\tilde{{{\textbf {Q}}}_0}}_{(k)}+\overline{{\textbf{Q}}}_{(k)}\), where \(\overline{{\textbf{Q}}}_{(k)}\) are constructed above and \({\tilde{{{\textbf {Q}}}_0}}_{(k)}\) vanishes to infinite order on the boundary. Hence, choosing boundary data such that \({\textbf{Q}}_{0,k}=0\) for \(k\geqq 0\) and \({\textbf{Q}}_{1,k}\geqq c_0>0\), then the Rayleigh-Taylor sign condition for \({{\textbf {P}}}_0^\infty \) is fulfilled and also we have \({\textbf{P}}^{\infty }_{(k)}|_{\Gamma }=0\) for all \(k\geqq 0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindblad, H., Zhang, J. Anisotropic Regularity of the Free-Boundary Problem in Compressible Ideal Magnetohydrodynamics. Arch Rational Mech Anal 247, 89 (2023). https://doi.org/10.1007/s00205-023-01917-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-023-01917-1

Navigation