Skip to main content

Advertisement

Log in

Discrete-to-Continuum Limits of Long-Range Electrical Interactions in Nanostructures

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider electrostatic interactions in two classes of nanostructures embedded in a three dimensional space: (1) helical nanotubes, and (2), thin films with uniform bending (i.e., constant mean curvature). Starting from the atomic scale with a discrete distribution of dipoles, we obtain the continuum limit of the electrostatic energy; the continuum energy depends on the geometric parameters that define the nanostructure, such as the pitch and twist of the helical nanotubes and the curvature of the thin film. We find that the limiting energy is local in nature. This can be rationalized by noticing that the decay of the dipole kernel is sufficiently fast when the lattice sums run over one and two dimensions, and is also consistent with prior work on dimension reduction of continuum micromagnetic bodies to the thin film limit. However, an interesting contrast between the discrete-to-continuum approach and the continuum dimension reduction approaches is that the limit energy in the latter depends only on the normal component of the dipole field, whereas in the discrete-to-continuum approach, both tangential and normal components of the dipole field contribute to the limit energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. That is, it is convergent, while the sums of only the positive terms and only the negative terms diverge, respectively, to \(\pm \infty \).

References

  1. Alicandro, R., Braides, A., Cicalese, M.: Continuum limits of discrete thin films with superlinear growth densities. Calc. Var. Partial. Differ. Equ. 33(3), 267–297, 2008

    Article  MathSciNet  MATH  Google Scholar 

  2. Alicandro, R., Cicalese, M., Gloria, A.: Variational description of bulk energies for bounded and unbounded spin systems. Nonlinearity 21(8), 1881, 2008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Alicandro, R., Cicalese, M., Gloria, A.: Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity. Arch. Ration. Mech. Anal. 200(3), 881–943, 2011

    Article  MathSciNet  MATH  Google Scholar 

  4. Aghaei, A., Dayal, K., Elliott, R.S.: Anomalous phonon behavior of carbon nanotubes: first-order influence of external load. J. Appl. Phys. 113(2), 023503, 2013

    Article  ADS  Google Scholar 

  5. Aghaei, A., Dayal, K., Elliott, R.S.: Symmetry-adapted phonon analysis of nanotubes. J. Mech. Phys. Solids 61(2), 557–578, 2013

    Article  ADS  Google Scholar 

  6. Ahmadpoor, F., Deng, Q., Liu, L.P., Sharma, P.: Apparent flexoelectricity in lipid bilayer membranes due to external charge and dipolar distributions. Phys. Rev. E 88(5), 050701, 2013

    Article  ADS  Google Scholar 

  7. Alicandro, R., Lazzaroni, G., Palombaro, M.: Derivation of a rod theory from lattice systems with interactions beyond nearest neighbours. Netw. Heterog. Media 13(1), 1, 2018

    Article  MathSciNet  MATH  Google Scholar 

  8. Bach, A., Braides, A., Cicalese, M.: Discrete-to-continuum limits of multibody systems with bulk and surface long-range interactions. SIAM J. Math. Anal. 52(4), 3600–3665, 2020

    Article  MathSciNet  MATH  Google Scholar 

  9. Blanc, X., Le Bris, C., Lions, P.-L.: From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164(4), 341–381, 2002

    Article  MathSciNet  MATH  Google Scholar 

  10. Blanc, X., Le Bris, C., Lions, P.-L.: Atomistic to continuum limits for computational materials science. ESAIM Math. Model. Numer. Anal. 41(2), 391–426, 2007

    Article  MathSciNet  MATH  Google Scholar 

  11. Brown, W.F.: Micromagnetics. Number 18. Interscience publishers, 1963

  12. Carbou, G.: Thin layers in micromagnetism. Math. Models Methods Appl. Sci. 11(09), 1529–1546, 2001

    Article  MathSciNet  MATH  Google Scholar 

  13. Cicalese, M., DeSimone, A., Zeppieri, C.I.: Discrete-to-continuum limits for strain-alignment-coupled systems: magnetostrictive solids, ferroelectric crystals and nematic elastomers. Netw. Heterog. Media 4(4), 667, 2009

    Article  MathSciNet  MATH  Google Scholar 

  14. Chacouche, K., Hadiji, R.: Ferromagnetic of nanowires of infinite length and infinite thin films. Z. Angew. Math. Phys. 66(6), 3519–3534, 2015

    Article  MathSciNet  MATH  Google Scholar 

  15. Dumitrică, T., James, R.D.: Objective molecular dynamics. J. Mech. Phys. Solids 55(10), 2206–2236, 2007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Dobson, M., Luskin, M., Ortner, C.: Sharp stability estimates for the force-based quasicontinuum approximation of homogeneous tensile deformation. Multiscale Model. Simul. 8(3), 782–802, 2010

    Article  MathSciNet  MATH  Google Scholar 

  17. Friesecke, G., James, R.D.: A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods. J. Mech. Phys. Solids 48(6–7), 1519–1540, 2000

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Grasinger, M., Dayal, K.: Architected elastomer networks for optimal electromechanical response. J. Mech. Phys. Solids 146, 104171, 2020

    Article  MathSciNet  Google Scholar 

  19. Grasinger, Matthew, Dayal, K.: Statistical mechanical analysis of the electromechanical coupling in an electrically-responsive polymer chain. Soft Matter 16, 6265–6284, 2020

    Article  ADS  Google Scholar 

  20. Gaudiello, A., Hamdache, K.: A reduced model for the polarization in a ferroelectric thin wire. Nonlinear Differ. Equ. Appl. 22(6), 1883–1896, 2015

    Article  MathSciNet  MATH  Google Scholar 

  21. Gioia, G., James, R.D.: Micromagnetics of very thin films. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 453(1956), 213–223, 1997

    Article  ADS  Google Scholar 

  22. Hakobyan, Y., Tadmor, E.B., James, R.D.: Objective quasicontinuum approach for rod problems. Phys. Rev. B 86(24), 245435, 2012

    Article  ADS  Google Scholar 

  23. James, R.D.: Objective structures. J. Mech. Phys. Solids 54(11), 2354–2390, 2006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Jha, P.: Coarse Graining of Electric Field Interactions with Materials. PhD thesis, Carnegie Mellon University, 2016

  25. James, R.D., Müller, S.: Internal variables and fine-scale oscillations in micromagnetics. Contin. Mech. Thermodyn. 6(4), 291–336, 1994

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Knap, J., Ortiz, M.: An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49(9), 1899–1923, 2001

    Article  ADS  MATH  Google Scholar 

  27. Kohn, R.V., Slastikov, V.V.: Another thin-film limit of micromagnetics. Arch. Ration. Mech. Anal. 178(2), 227–245, 2005

    Article  MathSciNet  MATH  Google Scholar 

  28. Kružík, M., Stefanelli, U., Zanini, C.: Quasistatic evolution of magnetoelastic plates via dimension reduction. Discrete Contin. Dyn. Syst. A 35(12), 5999, 2015

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, X.H., Luskin, M., Ortner, C.: Positive definiteness of the blended force-based quasicontinuum method. Multiscale Model. Simul. 10(3), 1023–1045, 2012

    Article  MathSciNet  MATH  Google Scholar 

  30. Lazzaroni, G., Palombaro, M., Schlömerkemper, A.: A discrete to continuum analysis of dislocations in nanowire heterostructures. Commun. Math. Sci. 13(5), 2015

  31. Lazzaroni, G., Palombaro, M., Schlömerkemper, A.: Rigidity of three-dimensional lattices and dimension reduction in heterogeneous nanowires. Discrete Contin. Dyn. Syst. 10(1), 119–139, 2017

    MathSciNet  MATH  Google Scholar 

  32. Liu, L.P., Sharma, P.: Flexoelectricity and thermal fluctuations of lipid bilayer membranes: renormalization of flexoelectric, dielectric, and elastic properties. Phys. Rev. E 87(3), 032715, 2013

    Article  ADS  Google Scholar 

  33. Marshall, J., Dayal, K.: Atomistic-to-continuum multiscale modeling with long-range electrostatic interactions in ionic solids. J. Mech. Phys. Solids 62, 137–162, 2014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Müller, S., Schlömerkemper, A.: Discrete-to-continuum limit of magnetic forces. C. R. Math. 335(4), 393–398, 2002

    Article  MathSciNet  MATH  Google Scholar 

  35. Miller, R.E., Tadmor, E.B.: The quasicontinuum method: overview, applications and current directions. J. Comput. Aided Mater. Des. 9(3), 203–239, 2002

    Article  ADS  Google Scholar 

  36. Schlömerkemper, A.: Mathematical derivation of the continuum limit of the magnetic force between two parts of a rigid crystalline material. Arch. Ration. Mech. Anal. 176(2), 227–269, 2005

    Article  MathSciNet  MATH  Google Scholar 

  37. Schmidt, B.: A derivation of continuum nonlinear plate theory from atomistic models. Multiscale Model. Simul. 5(2), 664–694, 2006

    Article  MathSciNet  MATH  Google Scholar 

  38. Schmidt, B.: On the passage from atomic to continuum theory for thin films. Arch. Ration. Mech. Anal. 190(1), 1–55, 2008

    Article  MathSciNet  MATH  Google Scholar 

  39. Schmidt, B.: On the derivation of linear elasticity from atomistic models. Netw. Heterog. Media 4(4), 789, 2009

    Article  MathSciNet  MATH  Google Scholar 

  40. Schlömerkemper, A., Schmidt, B.: Discrete-to-continuum limit of magnetic forces: dependence on the distance between bodies. Arch. Ration. Mech. Anal. 192(3), 589–611, 2009

    Article  MathSciNet  MATH  Google Scholar 

  41. Steigmann, D.J.: Mechanics and physics of lipid bilayers. In: The Role of Mechanics in the Study of Lipid Bilayers, pp. 1–61. Springer, 2018

  42. Sen, S., Wang, Y., Breitzman, T., Dayal, K.: Two-scale analysis of the polarization density in ionic solids. in preparation, 2021

  43. Tadmor, E.B., Miller, R.E.: Modeling Materials: Continuum, Atomistic and Multiscale Techniques. Cambridge University Press, Cambridge, 2011

  44. Torbati, M., Mozaffari, K., Liu, L., Sharma, P.: Coupling of mechanical deformation and electromagnetic fields in biological cells. Rev. Mod. Phys. 94(2), 025003, 2022

    Article  ADS  MathSciNet  Google Scholar 

  45. Tadmor, E.B., Ortiz, M., Phillips, R.: Quasicontinuum analysis of defects in solids. Philos. Mag. A 73(6), 1529–1563, 1996

    Article  ADS  Google Scholar 

  46. Toupin, R.A.: The elastic dielectric. J. Ration. Mech. Anal. 5(6), 849–915, 1956

    MathSciNet  MATH  Google Scholar 

  47. Xiao, Y.: The influence of oxygen vacancies on domain patterns in ferroelectric perovskites. Ph.D. thesis, California Institute of Technology, 2005

Download references

Acknowledgements

This paper draws from the doctoral dissertation of Prashant K. Jha at Carnegie Mellon University [24]. We thank Richard D. James for useful discussions; AFRL for hosting a visit by Kaushik Dayal; and NSF (2108784, 1921857), ARO (W911NF-17-1-0084), ONR (N00014-18-1-2528), and AFOSR (MURI FA9550-18-1-0095) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant K. Jha.

Additional information

Communicated by K. Bhattacharya.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, P.K., Breitzman, T. & Dayal, K. Discrete-to-Continuum Limits of Long-Range Electrical Interactions in Nanostructures. Arch Rational Mech Anal 247, 29 (2023). https://doi.org/10.1007/s00205-023-01869-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-023-01869-6

Navigation