Skip to main content
Log in

Continuum Percolation in Stochastic Homogenization and the Effective Viscosity Problem

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This contribution is concerned with the effective viscosity problem, that is, the homogenization of the steady Stokes system with a random array of rigid particles, for which the main difficulty is the treatment of close particles. Standard approaches in the literature have addressed this issue by making moment assumptions on interparticle distances. Such assumptions, however, prevent clustering of particles, which is not compatible with physically-relevant particle distributions. In this contribution, we take a different perspective and consider moment bounds on the size of clusters of close particles. On the one hand, assuming such bounds, we construct correctors and prove homogenization. On the other hand, based on subcritical percolation techniques, these bounds are shown to hold for various mixing particle distributions with nontrivial clustering. As a by-product of the analysis, we also obtain similar homogenization results for compressible and incompressible linear elasticity with unbounded random stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

Data sharing not applicable.

Notes

  1. This minimization problem is clearly well-posed: due to the rigidity constraint the functional is equivalent to \(\int _U |\!{\text {D}}(v)|^2 - f\cdot v\,\mathbbm {1}_{U{\setminus }\mathcal {I}_\varepsilon (U)}\), the latter is weakly lower semicontinuous and coercive on \(H^1_0(U)^d\) by Korn’s inequality, and the incompressibility and rigidity constraints are feasible and weakly closed.

References

  1. Acosta, G., Durán, R.G., Muschietti, M.A.: Solutions of the divergence operator on John domains. Adv. Math. 206(2), 373–401, 2006

    Article  MathSciNet  MATH  Google Scholar 

  2. Batchelor, G.K., Green, J.T.: The determination of the bulk stress in suspension of spherical particles to order \(c^2\). J. Fluid Mech. 56(3), 401–427, 1972

    Article  ADS  MATH  Google Scholar 

  3. Batchelor, G.K., Green, J.T.: The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech. 56(2), 375–400, 1972

    Article  ADS  MATH  Google Scholar 

  4. Biskup, M.: Recent progress on the random conductance model. Probab. Surv. 8, 294–373, 2011

    Article  MathSciNet  MATH  Google Scholar 

  5. Braides, A.: A handbook of \({\Gamma }\)-convergence. In: Chipot, M., Quittner, P. (eds.) Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 3. Handbook of Differential Equations. Elsevier, Amsterdam (2006)

    Google Scholar 

  6. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence, vol. 8. Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston (1993)

    Book  MATH  Google Scholar 

  7. Duerinckx, M.: Effective viscosity of random suspensions without uniform separation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 39(5), 1009–1052, 2022

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Duerinckx, M., Gloria, A.: On Einstein’s effective viscosity formula. arXiv:2008.03837

  9. Duerinckx, M., Gloria, A.: Multiscale functional inequalities in probability: constructive approach. Ann. Henri Lebesgue 3, 825–872, 2020

    Article  MathSciNet  MATH  Google Scholar 

  10. Duerinckx, M., Gloria, A.: Corrector equations in fluid mechanics: effective viscosity of colloidal suspensions. Arch. Ration. Mech. Anal. 239, 1025–1060, 2021

    Article  MathSciNet  MATH  Google Scholar 

  11. Duminil-Copin, H., Raoufi, A., Tassion, V.: Exponential decay of connection probabilities for subcritical Voronoi percolation in \(\mathbb{R} ^d\). Probab. Theory Relat. Fields 173(1–2), 479–490, 2019

    Article  MATH  Google Scholar 

  12. Duminil-Copin, H., Raoufi, A., Tassion, V.: Subcritical phase of \(d\)-dimensional Poisson–Boolean percolation and its vacant set. Ann. Henri Lebesgue 3, 677–700, 2020

    Article  MathSciNet  MATH  Google Scholar 

  13. Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics, vol. 219. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1976)

    MATH  Google Scholar 

  14. Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322(8), 549–560, 1905

    Article  MATH  Google Scholar 

  15. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems, 2nd edn. Springer Monographs in Mathematics. Springer, New York (2011)

    MATH  Google Scholar 

  16. Gérard-Varet, D., Girodroux-Lavigne, A.: Homogenization of stiff inclusions through network approximation. Netw. Heterog. Media 17(2), 163–202, 2022

    Article  MathSciNet  MATH  Google Scholar 

  17. Grimmett, G.: Percolation. Springer, New York (1989)

    Book  MATH  Google Scholar 

  18. Höfer, R., Gérard-Varet, D.: Mild assumptions for the derivation of Einstein’s effective viscosity formula. Commun. Partial Differ. Equ. 46(4), 611–629, 2021

    Article  MathSciNet  MATH  Google Scholar 

  19. Jikov, V.V., Kozlov, S.M., Oleĭnik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)

    Book  Google Scholar 

  20. Liggett, T.M., Schonmann, R.H., Stacey, A.M.: Domination by product measures. Ann. Probab. 25(1), 71–95, 1997

    Article  MathSciNet  MATH  Google Scholar 

  21. Martio, O.: John domains, bi-Lipschitz balls and Poincaré inequality. Rev. Roum. Math. Pures Appl. 33(1–2), 107–112, 1988

    ADS  MATH  Google Scholar 

  22. Penrose, M.D.: Random parking, sequential adsorption, and the jamming limit. Commun. Math. Phys. 218(1), 153–176, 2001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Reshetnyak, Y.G.: Integral representations of differentiable functions in domains with a nonsmooth boundary. Sib. Mat. Zh. 21(6), 108–116, 1980

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Hugo Duminil-Copin for his feedback on the subcritical percolation estimates in Sect. 3. MD acknowledges financial support from the CNRS-Momentum program and from F.R.S.-FNRS, and AG from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 864066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Gloria.

Additional information

Communicated by A. Braides.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duerinckx, M., Gloria, A. Continuum Percolation in Stochastic Homogenization and the Effective Viscosity Problem. Arch Rational Mech Anal 247, 26 (2023). https://doi.org/10.1007/s00205-023-01857-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-023-01857-w

Navigation