Skip to main content
Log in

On the Canham Problem: Bending Energy Minimizers for any Genus and Isoperimetric Ratio

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Building on work of Mondino–Scharrer, we show that among closed, smoothly embedded surfaces in \({\mathbb {R}}^3\) of genus g and given isoperimetric ratio v, there exists one with minimum bending energy \({\mathcal {W}}\). We do this by gluing \(g+1\) small catenoidal bridges to the bigraph of a singular solution for the linearized Willmore equation \(\Delta (\Delta +2)\varphi =0\) on the \((g+1)\)-punctured sphere \({\mathbb {S}}^2\) to construct a comparison surface of genus g with arbitrarily small isoperimetric ratio \(v\in (0, 1)\) and \({\mathcal {W}}< 8\pi \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, M., Kuwert, E.: Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Not. 10, 553–576, 2003

    Article  MathSciNet  MATH  Google Scholar 

  2. Canham, P.: The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26(1), 61–81, 1970

    Article  ADS  Google Scholar 

  3. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung C 28(11–12), 693–703, 1973

    Article  Google Scholar 

  4. Kapouleas, N.: Minimal surfaces in the round three-sphere by doubling the equatorial two-sphere I. J. Differ. Geom. 106(3), 393–449, 2017

    MathSciNet  MATH  Google Scholar 

  5. Kapouleas, N., McGrath, P.: Generalizing the linearized doubling approach and new minimal surfaces and self-shrinkers via doubling. Cambridge J. Math. (to appear). arXiv:2001.04240.

  6. Kapouleas, N., McGrath, P.: Minimal surfaces in the round three-sphere by doubling the equatorial two-sphere II. Commun. Pure Appl. Math. 72(10), 2121–2195, 2019

    Article  MathSciNet  MATH  Google Scholar 

  7. Keller, L.G.A., Mondino, A., Rivière, T.: Embedded surfaces of arbitrary genus minimizing the Willmore energy under isoperimetric constraint. Arch. Ration. Mech. Anal. 212(2), 645–682, 2014

    Article  MathSciNet  MATH  Google Scholar 

  8. Ketover, D., Marques, F.C., Neves, A.: The catenoid estimate and its geometric applications. J. Differ. Geom. 115(1), 1–26, 2020

    MathSciNet  MATH  Google Scholar 

  9. Kusner, R.: Comparison surfaces for the Willmore problem. Pacific J. Math. 138(2), 317–345, 1989

    Article  MathSciNet  MATH  Google Scholar 

  10. Kusner, R.: Estimates for the biharmonic energy on unbounded planar domains, and the existence of surfaces of every genus that minimize the squared-mean-curvature integral. In: Elliptic and Parabolic Methods in Geometry (Minneapolis, pp. 67–72. MN, 1994). A K Peters, Wellesley, 1996

  11. Kusner, R., Mondino, A., Schulze, F.: Willmore bending energy on the space of surfaces, MSRI Emissary, Spring, 2016. https://www.msri.org/system/cms/files/204/files/original/Emissary-2016-Spring-Web.pdf

  12. Kuwert, E., Li, Y.: Asymptotics of Willmore minimizers with prescribed small isoperimetric ratio. SIAM J. Math. Anal. 50(4), 4407–4425, 2018

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, P., Yau, S.T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69(2), 269–291, 1982

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Mondino, A., Scharrer, C.: A strict inequality for the minimization of the Willmore functional under isoperimetric constraint. Advances in Calculus of Variations, p. 000010151520210002, 2021

  15. Ndiaye, C.B., Schätzle, R.M.: New examples of conformally constrained Willmore minimizers of explicit type. Adv. Calc. Var. 8(4), 291–319, 2015

    Article  MathSciNet  MATH  Google Scholar 

  16. Scharrer, C.: Embedded Delaunay tori and their Willmore energy. Nonlinear Anal. 223, 113010, 2022

    Article  MathSciNet  MATH  Google Scholar 

  17. Schygulla, J.: Willmore minimizers with prescribed isoperimetric ratio. Arch. Ration. Mech. Anal. 203(3), 901–941, 2012

    Article  MathSciNet  MATH  Google Scholar 

  18. Simon, L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1(2), 281–326, 1993

    Article  MathSciNet  MATH  Google Scholar 

  19. Weiner, J.L.: On a problem of Chen, Willmore, et al. Indiana Univ. Math. J. 27(1), 19–35, 1978

Download references

Acknowledgements

We thank Nikos Kapouleas, whose constructions of minimal surfaces via linearized doubling inspired this approach to solving the Canham existence problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter McGrath.

Additional information

Communicated by S. Müller

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Mean Curvature on a Catenoidal Bridge

Appendix A. Mean Curvature on a Catenoidal Bridge

In this appendix, we estimate the mean curvature of a small catenoidal bridge in \({\mathbb {S}}^3\). This was done in [5, Example 2.15], but we summarize the argument in order to keep the exposition self-contained.

Define a parametrization \(E :(0, \pi ) \times (-\pi , \pi ) \times (-\frac{\pi }{2},\frac{\pi }{2} ) \rightarrow {\mathbb {S}}^3\) by

We take \(({r}, \theta , {z})\) as local coordinates for \({\mathbb {S}}^3\). The pullback metric is

$$\begin{aligned} E^* g = \cos ^2 {z}\left( \textrm{d} {r}^2 + \sin ^2 {r}\textrm{d} \theta ^2\right) + \textrm{d}{z}^2, \end{aligned}$$

and the only nonvanishing Christoffel symbols are

$$\begin{aligned}{} & {} \Gamma _{{r}{z}}^{{r}} = \Gamma _{{z}{r}}^{{r}}= \Gamma _{\theta {z}}^{\theta } = \Gamma _{{z}\theta }^{\theta } = - \tan {z}, \quad \Gamma _{\theta \theta }^{r}= - \sin {r}\cos {r}, \nonumber \\{} & {} \quad \Gamma _{{r}\theta }^{\theta } = \Gamma _{\theta {r}}^{\theta } = \cot {r}, \quad \Gamma _{{r}{r}}^{{z}} = \cos {z}\sin {z}, \quad \Gamma _{\theta \theta }^{{z}} = \sin ^2 {r}\sin {z}\cos {z}. \end{aligned}$$
(A.1)

Define a map \(X: [-\underline{{{{s}}}}, \underline{{{{s}}}}] \times (-\pi , \pi ) \rightarrow {\mathbb {R}}^3\) by

$$\begin{aligned} X({{{s}}}, \vartheta )&= ({r}({{{s}}}, \vartheta ), \theta ({{{s}}}, \vartheta ), {z}({{{s}}}, \vartheta )) \nonumber \\&= (\tau \cosh {{{s}}}, \vartheta , \tau {{{s}}}), \end{aligned}$$
(A.2)

where \(\underline{{{{s}}}}\) is defined by the equation \(\tau \cosh \underline{{{{s}}}}= 9 \tau ^\alpha \).

Calculation shows that the pullback metric in \(({{{s}}}, \vartheta )\) coordinates is

$$\begin{aligned} X^* E^* g = {r}^2( 1- \tanh ^2 {{{s}}}\sin ^2 {z}) \textrm{d}{{{s}}}^2 + \cos ^2 {z}\sin ^2 {r}\, \textrm{d}\vartheta ^2, \end{aligned}$$
(A.3)

where \({r}= {r}({{{s}}}, \vartheta )\) and \({z}= {z}({{{s}}}, \vartheta )\), and that

$$\begin{aligned} \nu =( \tanh {{{s}}}\, \partial _{{z}} - \sec ^2{z}{\,\hbox {sech}}\,{{{s}}}\, \partial _{{r}})/\sqrt{1+\tan ^2 {z}{\,\hbox {sech}}\,^2 {{{s}}}} \end{aligned}$$

is a unit normal field along the image of X. We compute the second fundamental form A of X using the formula \(A = \left( X^{k}_{, \alpha \beta } + \Gamma _{lm}^{k} X^l_{, \alpha } X^{m}_{, \beta }\right) g_{kn}\nu ^n dx^\alpha dx^\beta \), where X is as in A.2, we have renamed the cylinder coordinates \((x^1, x^2): = ({{{s}}}, \vartheta )\), and Greek indices take the values 1 and 2 while Latin indices take the values 1, 2, 3, corresponding to the coordinates \({r}, \theta , {z}\). Using the preceding and the Christoffel symbols in (A.1), we find

$$\begin{aligned} A&= \frac{ \left[ \tau ^2 \tanh {{{s}}}\left( \tan {z}+ \frac{1}{2}\sinh ^2 {{{s}}}\sin 2{z}\right) - \tau \right] \textrm{d}{{{s}}}^2 +\frac{1}{2}(\sin 2{r}{\,\hbox {sech}}\,{{{s}}}+ \sin ^2 {r}\sin 2{z}\tanh {{{s}}}) \, \textrm{d}\vartheta ^2 }{ \sqrt{ 1+ \tan ^2 {z}{\,\hbox {sech}}\,^2 {{{s}}}}}\\&= (1+ O({z}^2)) \left( \tau ( - \textrm{d}{{{s}}}^2 + \textrm{d}\vartheta ^2) + O({r}^2 {z})\textrm{d}{{{s}}}^2 + O({r}^3+{r}^2 {z}) \textrm{d}\vartheta ^2\right) , \end{aligned}$$

where in the second equality we have estimated using that \( \sqrt{ 1+ \tan ^2 {z}{\,\hbox {sech}}\,^2 {{{s}}}} = 1+ O({z}^2)\) and that \(\frac{1}{2}\sin 2{r}{\,\hbox {sech}}\,{{{s}}}= \tau + O({r}^3)\). Finally, using that \({r}^2 g^{{{{s}}}{{{s}}}} = 1+ O({z}^2)\) and \({r}^2 g^{\vartheta \vartheta } = 1+O({z}^2 +{r}^2)\), we estimate

$$\begin{aligned} {r}^2 H = O\left( \tau {z}^2 +{r}^2 |{z}| + \tau {r}^2 \right) . \end{aligned}$$
(A.4)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusner, R., McGrath, P. On the Canham Problem: Bending Energy Minimizers for any Genus and Isoperimetric Ratio. Arch Rational Mech Anal 247, 10 (2023). https://doi.org/10.1007/s00205-022-01833-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-022-01833-w

Navigation