Skip to main content
Log in

On Uniqueness of Multi-bubble Blow-Up Solutions and Multi-solitons to \(L^2\)-Critical Nonlinear Schrödinger Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We are concerned with the focusing \(L^2\)-critical nonlinear Schrödinger equations in \({{\mathbb {R}}}^d\) for dimensions \(d=1,2\). The uniqueness is proved for a large energy class of multi-bubble blow-up solutions, which converge to a sum of K pseudo-conformal blow-up solutions particularly with the low rate \((T-t)^{0+}\), as \(t\rightarrow T\), \(1\leqq K<{\infty }\). Moreover, we also prove the uniqueness in the energy class of multi-solitons which converge to a sum of K solitary waves with convergence rate \((1/t)^{2+}\), as \(t\rightarrow {\infty }\). The uniqueness class is further enlarged to contain the multi-solitons with even lower convergence rate \((1/t)^{\frac{1}{2}+}\) in the pseudo-conformal space. Our proof is mainly based on several upgrading procedures of the convergence of remainder in the geometrical decomposition, in which the key ingredients are several monotone functionals constructed particularly in the multi-bubble case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu, V., Röckner, M., Zhang, D.: The stochastic logarithmic Schrödinger equation. J. Math. Pures Appl. 107(2), 123–149, 2017

    MathSciNet  MATH  Google Scholar 

  2. Barbu, V., Röckner, M., Zhang, D.: Optimal bilinear control of nonlinear stochastic Schrödinger equations driven by linear multiplicative noise. Ann. Probab. 46(4), 1957–1999, 2018

    MathSciNet  MATH  Google Scholar 

  3. Brzézniak, Z., Millet, A.: On the stochastic Strichartz estimates and the stochastic nonlinear Schrödinger equation on a compact Riemannian manifold. Potential Anal. 41(2), 269–315, 2014

    MathSciNet  MATH  Google Scholar 

  4. Bourgain, J.: Problems in Hamiltonian PDE’s. Visions in Mathematics. GAFA 2000 Special Volume, Part I, 32–56, Birkhäuser Verlag, Basel 2000

  5. Cao, D., Guo, Y., Peng, S., Yan, S.: Local uniqueness for vortex patch problem in incompressible planar steady flow. J. Math. Pures Appl. 131(9), 251–289, 2019

    MathSciNet  MATH  Google Scholar 

  6. Cao, D., Heinz, H.P.: Uniqueness of positive multi-lump bound states of nonlinear Schrödinger equations. Math. Z. 243(3), 599–642, 2003

    MathSciNet  MATH  Google Scholar 

  7. Cao, D., Luo, P., Peng, S.: The number of positive solutions to the Brezis-Nirenberg problem. Trans. Am. Math. Soc. 374(3), 1947–1985, 2021

    MathSciNet  MATH  Google Scholar 

  8. Cao, D., Peng, S., Yan, S.: Singularly perturbed methods for nonlinear Elliptic problems. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge. 191, 2021

  9. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI 2003

  10. Combet, V.: Multi-soliton solutions for the supercritical gKdV equations. Comm. Partial Differ. Equ. 36(3), 380–419, 2011

    MathSciNet  MATH  Google Scholar 

  11. Combet, V.: Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension. Discrete Contin. Dyn. Syst. 34(5), 1961–1993, 2014

    MathSciNet  MATH  Google Scholar 

  12. Combet, V., Martel, Y.: Construction of multibubble solutions for the critical GKDV equation. SIAM J. Math. Anal. 50(4), 3715–3790, 2018

    MathSciNet  MATH  Google Scholar 

  13. Côte, R., Friederich, X.: On smoothness and uniqueness of multi-solitons of the non-linear Schrödinger equations. hal-02873307v2, to appear in Comm. Partial Differential Equations. 2020

  14. Côte, R., Le Coz, S.: High-speed excited multi-solitons in nonlinear Schrödinger equations. J. Math. Pures Appl. 96(2), 135–166, 2011

    MathSciNet  MATH  Google Scholar 

  15. Côte, R., Martel, Y., Merle, F.: Construction of multi-soliton solutions for the \(L^2\)-supercritical gKdV and NLS equations. Rev. Mat. Iberoam. 27(1), 273–302, 2011

    MathSciNet  MATH  Google Scholar 

  16. Côte, R., Muñoz, C.: Multi-solitons for nonlinear Klein-Gordon equations. Forum Math. Sigma 2, 38, 2014

  17. de Bouard, A., Debussche, A.: On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation. Probab. Theory Relat. Fields 123(1), 76–96, 2002

    MATH  Google Scholar 

  18. de Bouard, A., Debussche, A.: Blow-up for the stochastic nonlinear Schrödinger equation with multiplicative noise. Ann. Probab. 33(3), 1078–1110, 2005

    MathSciNet  MATH  Google Scholar 

  19. Dodson, B.: A determination of the blowup solutions to the focusing NLS with mass equal to the mass of the soliton d=1. arXiv:2104.11690

  20. Dodson, B.: A determination of the blowup solutions to the focusing NLS with mass equal to the mass of the soliton. arXiv:2106.02723

  21. Dyachenko, S., Newell, A.C., Pushkarev, A., Zakharov, V.E.: Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation. Phys. D 57(1–2), 96–160, 1992

    MathSciNet  MATH  Google Scholar 

  22. Fan, C.J.: Log-log blow up solutions blow up at exactly m points. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(6), 1429–1482, 2017

    ADS  MathSciNet  MATH  Google Scholar 

  23. Fan, C.J., Su, Y., Zhang, D.: A note on log-log blow up solutions for stochastic nonlinear Schrödinger equations. Stoch. Partial Differ. Equ. Anal. Comput., 2021. https://doi.org/10.1007/s40072-021-00213-x

    Article  MATH  Google Scholar 

  24. Fan, C.J., Xu, W.J.: Subcritical approximations to stochastic defocusing mass-critical nonlinear Schrödinger equation on R. J. Differ. Equ. 268(1), 160–185, 2019

    ADS  MathSciNet  MATH  Google Scholar 

  25. Gustafson, S.J., Sigal, I.M.: Mathematical Concepts of Quantum Mechanics, 2nd edn. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  26. Herr, S., Röckner, M., Zhang, D.: Scattering for stochastic nonlinear Schrödinger equations. Commun. Math. Phys. 368(2), 843–884, 2019

    ADS  MATH  Google Scholar 

  27. Jendrej, J.: Construction of two-bubble solutions for the energy-critical NLS. Anal. PDE 10(8), 1923–1959, 2017

    MathSciNet  MATH  Google Scholar 

  28. Jendrej, J., Kowalczyk M., Lawrie, A.: Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line. arXiv: 1911.02064v2

  29. Jendrej, J., Lawrie, A.: Two-bubble dynamics for threshold solutions to the wave maps equation. Invent. Math. 213(3), 1249–1325, 2018

    ADS  MathSciNet  MATH  Google Scholar 

  30. Jendrej, J., Martel, Y.: Construction of multi-bubble solutions for the energy-critical wave equation in dimension 5. J. Math. Pures Appl. 139(9), 317–355, 2020

    MathSciNet  MATH  Google Scholar 

  31. Kelley, P.L.: Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005–1008, 1965

    ADS  Google Scholar 

  32. Killip, R., Li, D., Visan, M., Zhang, X.Y.: Characterization of minimal-mass blowup solutions to the focusing mass-critical NLS. SIAM J. Math. Anal. 41(1), 219–236, 2009

    MathSciNet  MATH  Google Scholar 

  33. Kim, K., Kwon, S.: On pseudoconformal blow-up solutions to the self-dual Chern-Simons-Schrödinger equation: existence, uniqueness, and instability, arXiv:1909.01055, to appear in Mem. Am. Math. Soc

  34. Krieger, J., Martel, Y., Raphaël, P.: Two-soliton solutions to the three-dimensional gravitational Hartree equation. Commun. Pure Appl. Math. 62(11), 1501–1550, 2009

    MathSciNet  MATH  Google Scholar 

  35. Krieger, J., Schlag, W., Tataru, D.: Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171(3), 543–615, 2008

    ADS  MathSciNet  MATH  Google Scholar 

  36. Lan, Y.: Blow-up solutions for \(L^2\) supercritical gKdV equations with exactly k blow-up points. Nonlinearity 30(8), 3203–3240, 2017

    ADS  MathSciNet  MATH  Google Scholar 

  37. Le Coz, S., Li, D., Tsai, T.P.: Fast-moving finite and infinite trains of solitons for nonlinear Schrödinger equations. Proc. Roy. Soc. Edinburgh Sect. A 145(6), 1251–1282, 2015

    MathSciNet  MATH  Google Scholar 

  38. Le Coz, S., Tsai, T.P.: Infinite soliton and kink-soliton trains for nonlinear Schrödinger equations. Nonlinearity 27(11), 2689–2709, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  39. Li, D., Zhang, X.Y.: On the rigidity of minimal mass solutions to the focusing mass-critical NLS for rough initial data. Electron. J. Differ. Equ. 78, 19, 2009

    MathSciNet  MATH  Google Scholar 

  40. Li, D., Zhang, X.Y.: On the rigidity of solitary waves for the focusing mass-critical NLS in dimensions \(d\ge 2\). Sci. China Math. 55(2), 385–434, 2012

    MathSciNet  MATH  Google Scholar 

  41. Martel, Y.: Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations. Am. J. Math. 127(5), 1103–1140, 2005

    MathSciNet  MATH  Google Scholar 

  42. Martel, Y.: Interaction of solitons from the PDE point of view. Proceedings of the International Congress of Mathematicians-Rio de Janeiro 2018. Vol. III. Invited lectures, 2439–2466, World Sci. Publ., Hackensack, NJ, 2018

  43. Martel, Y., Merle, F.: Instability of solitons for the critical generalized Korteweg-de Vries equation. Geom. Funct. Anal. 457(11), 74–123, 2001

    MathSciNet  MATH  Google Scholar 

  44. Martel, Y., Merle, F.: Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation. Ann. Math. 155(1), 235–280, 2002

    MathSciNet  MATH  Google Scholar 

  45. Martel, Y., Merle, F.: Multi solitary waves for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(6), 849–864, 2006

    ADS  MathSciNet  MATH  Google Scholar 

  46. Martel, Y., Merle, F., Raphaël, P.: Blow up for the critical gKdV equation. II: Minimal mass dynamics. J. Eur. Math. Soc. 17(8), 1855–1925, 2015

    MathSciNet  MATH  Google Scholar 

  47. Martel, Y., Merle, F., Tsai, T.P.: Stability in \(H^1\) of the sum of \(K\) solitary waves for some nonlinear Schrödinger equations. Duke Math. J. 133(3), 405–466, 2006

    MathSciNet  MATH  Google Scholar 

  48. Martel, Y., Raphaël, P.: Strongly interacting blow up bubbles for the mass critical nonlinear Schrödinger equation. Ann. Sci. Éc. Norm. Supér. 51(3), 701–737, 2018

    MathSciNet  MATH  Google Scholar 

  49. Merle, F.: Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity. Commun. Math. Phys. 129(2), 223–240, 1990

    ADS  MathSciNet  MATH  Google Scholar 

  50. Merle, F.: Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J. 69(2), 427–454, 1993

    ADS  MathSciNet  MATH  Google Scholar 

  51. Merle, F., Raphaël, P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math. 161(1), 157–222, 2005

    MathSciNet  MATH  Google Scholar 

  52. Merle, F., Raphaël, P.: Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation. Commun. Math. Phys. 253(3), 675–704, 2005

    ADS  MATH  Google Scholar 

  53. Merle, F., Raphaël, P., Szeftel, J.: The instability of Bourgain-Wang solutions for the \(L^2\) critical NLS. Am. J. Math. 135(4), 967–1017, 2013

    MATH  Google Scholar 

  54. Ming, M., Rousset, F., Tzvetkov, N.: Multi-solitons and related solutions for the water-waves system. SIAM J. Math. Anal. 47(1), 897–954, 2015

    MathSciNet  MATH  Google Scholar 

  55. Miura, R.M.: The Korteweg-de Vries equation, a survey of results. SIAM Rev. 18(11), 412–459, 1976

    ADS  MathSciNet  MATH  Google Scholar 

  56. Raphaël, P., Szeftel, J.: Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS. J. Am. Math. Soc. 24(2), 471–546, 2011

    MathSciNet  MATH  Google Scholar 

  57. Su, Y., Guo, Q.: Blow-up solutions to nonlinear Schrödinger system at multiple points. Z. Angew. Math. Phys. 70, 14, 2019

  58. Su, Y., Zhang, D.: Minimal mass blow-up solutios to rough nonlinear Schrödinger equations. arXiv: 2002.09659v1

  59. Su, Y., Zhang, D.: On the multi-bubble blow-up solutions to rough nonlinear Schrödinger equations. arXiv: 2012.14037v1

  60. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger equation: self-focusing and wave collapse. applied mathematical sciences, vol. 139. Springer, New York (1999)

    MATH  Google Scholar 

  61. Weinstein, M.: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87(4), 567–576, 1982/1983

  62. Weinstein, M.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491, 1985

    MathSciNet  MATH  Google Scholar 

  63. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Phys. JETP 34, 62–69, 1972

    ADS  MathSciNet  Google Scholar 

  64. Zhang, D.: Optimal bilinear control of stochastic nonlinear Schrödinger equations: mass-(sub)critical case. Probab. Theory Rel. Fields 178(1–2), 69–120, 2020

    MATH  Google Scholar 

Download references

Acknowledgements

D. Cao is supported by NNSF of China Grant 11831009, Y. Su is supported by NSFC (No. 11601482) , D. Zhang is supported by NSFC (No. 12271352) and Shanghai Rising-Star Program 21QA1404500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daomin Cao.

Additional information

Communicated by P. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix we collect the tools used in the previous sections and the proof of modulation equations in Proposition 2.5.

Lemma 6.1

([9, Theorem 1.3.7]) Let \(d\geqq 1\) and \(2\leqq p< \infty \). Then, there exists \(C>0\) such that

$$\begin{aligned} \Vert f\Vert _{L^p}\leqq C \Vert f\Vert _{L^2}^{1 - d (\frac{1}{2}-\frac{1}{p})} \Vert \nabla f\Vert _{L^2}^{d(\frac{1}{2}-\frac{1}{p})}, \ \ \forall f\in H^1. \end{aligned}$$
(6.1)

In particular, for any \(1<p<{\infty }\),

$$\begin{aligned} \Vert f\Vert _{L^p} \leqq C \Vert f\Vert _{H^1},\ \ \forall f\in L^p. \end{aligned}$$
(6.2)

Lemma 6.2

(Decoupling estimates [59, Lemma 3.1]) For every \(1\leqq k\leqq K\), set

$$\begin{aligned} G_k(t,x) := {\lambda }_k^{-\frac{d}{2}} g_k(t,\frac{x-{\alpha }_k}{{\lambda }_k}) e^{i\theta _k}, \ \ with\ \ g_{k}(t,y) := g(y) e^{i(\beta _{k}(t) \cdot y - \frac{1}{4}{\gamma }_{k}(t) |y|^2)}, \end{aligned}$$
(6.3)

where \(g \in C_b^2({{\mathbb {R}}}^d)\) decays exponentially fast at infinity

$$\begin{aligned} |\partial ^\nu g(y)| \leqq C e^{-\delta |y|}, \ \ |\nu |\leqq 2, \end{aligned}$$

with \(C,\delta >0\), \({{\mathcal {P}}}_k:=({\lambda }_k,\alpha _k,\beta _k,\gamma _k,\theta _k) \in C([T^*,T); {\mathbb {X}})\) satisfies that for \(T^*\) close to T

$$\begin{aligned} |(\alpha _k(t)-x_k)\cdot \mathbf{v_1}|\leqq \sigma , \ |x_k - {\alpha }_k(t)| \leqq 1,\ \frac{1}{2}\leqq \frac{\lambda _{k}(t)}{|\omega _{k}(T-t)|}\leqq 2, \ \ t\in [T^*,T), \end{aligned}$$
(6.4)

and \(|\beta _k|+|{\gamma }_k|\leqq 1\),

$$\begin{aligned} C (T-T^*) (1+ \max _{1\leqq k\leqq K} |x_k|) \leqq 1, \end{aligned}$$
(6.5)

where C is sufficiently large but independent of T. Then, there exist \(C, \delta >0\) such that for any \(1\leqq k\not =l\leqq K\), \(m\in {\mathbb {N}}\), for any multi-index \(\nu \) with \(|\nu |\leqq 2\) and for any \(T^*\) close to T,

$$\begin{aligned} \int \limits _{{{\mathbb {R}}}^d} |x-{\alpha }_l|^n |\partial ^\nu G_l(t)| |x-{\alpha }_k|^m |G_k(t)| dx \leqq Ce^{-\frac{\delta }{T-t}}, \ \ t\in [T^*,T). \end{aligned}$$
(6.6)

Moreover, for any \(h\in L^1\) or \(L^2\), \(1\leqq k\not = l\leqq K\), \(m,n\in {\mathbb {N}}\), multi-index \(\nu \) with \(|\nu |\leqq 2\) and \(T^*\) close to T,

$$\begin{aligned}&\int \limits _{{{\mathbb {R}}}^d} |x-{\alpha }_l|^n |\partial ^\nu G_l(t)| |x-{\alpha }_k|^m |h| \Phi _kdx \nonumber \\&\quad \leqq Ce^{-\frac{\delta }{T-t}} \min \{\Vert h\Vert _{L^1}, \Vert h\Vert _{L^2}\}, \ \ t\in [T^*,T). \end{aligned}$$
(6.7)

Coercivity of linearized operators. We recall the linearized operators from [56, 58, 59, 62]. Let Q denote the ground state that solves the elliptic equation (1.1). It is known that Q is smooth and decays at infinity exponentially fast, i.e., there exist \(C, \delta >0\) such that for any multi-index \(|\nu |\leqq 3\),

$$\begin{aligned} |\partial _x^\nu Q(x)|\leqq C e^{-\delta |x|}, \ \ x\in {{\mathbb {R}}}^d. \end{aligned}$$
(6.8)

Define the linearized operator \(L=(L_+,L_-)\) around the ground state by

$$\begin{aligned} L_{+}:= -\Delta + I -(1+{\frac{4}{d}})Q^{\frac{4}{d}}, \ \ L_{-}:= -\Delta +I -Q^{\frac{4}{d}}, \end{aligned}$$
(6.9)

which has the generalized null space spanned by \(\{Q, xQ, |x|^2 Q, \nabla Q, \Lambda Q, \rho \}\). Here, the operator \(\Lambda := \frac{d}{2}I_d + x\cdot \nabla \), and \(\rho \) is the unique radial solution to the equation

$$\begin{aligned} L_{+}\rho = - |x|^2Q. \end{aligned}$$
(6.10)

One has the exponential decay of \(\rho \) (see, e.g., [34, 48])

$$\begin{aligned} |\rho (x)|+|\nabla \rho (x)| \leqq Ce^{-\delta |x|}, \end{aligned}$$
(6.11)

where \(C,\delta >0\), and the algebraic identities (see, e.g., [62, (B.1), (B.10), (B.15)])

$$\begin{aligned} \begin{aligned}&L_+ \nabla Q =0,\ \ L_+ \Lambda Q = -2 Q,\ \ L_+ \rho = -|x|^2 Q, \\&L_{-} Q =0,\ \ L_{-} xQ = -2 \nabla Q,\ \ L_{-} |x|^2 Q = - 4 \Lambda Q. \end{aligned}\end{aligned}$$
(6.12)

For any complex valued \(H^1\) function \(f = f_1 + i f_2\) in terms of the real and imaginary parts, set

$$\begin{aligned} (Lf,f) :=\int f_1L_+f_1\textrm{d}x+\int f_2L_-f_2\textrm{d}x. \end{aligned}$$
(6.13)

The scalar product along the unstable directions in the null space is defined by

$$\begin{aligned} \textrm{Scal}(f)=&\langle f_1,Q\rangle ^2+\langle f_1,xQ\rangle ^2+\langle f_1,|x|^2Q\rangle ^2+\langle f_2,\nabla Q\rangle ^2\nonumber \\&+\langle f_2,\Lambda Q\rangle ^2+\langle f_2,\rho \rangle ^2. \end{aligned}$$
(6.14)

The localized coercivity of linearized operators is stated in Lemma 6.3 below.

Lemma 6.3

(Localized coercivity [59, Corollary 3.4]) Let \(\phi \) be a positive smooth radial function on \({\mathbb {R}}^d\), such that \(\phi (x) = 1\) for \(|x|\leqq 1\), \(\phi (x) = e^{-|x|}\) for \(|x|\geqq 2\), \(0<\phi \leqq 1\), and \(\left| \frac{\nabla \phi }{\phi }\right| \leqq C\) for some \(C>0\). Set \(\phi _A(x) :=\phi \left( \frac{x}{A}\right) \), \(A>0\). Then, for A large enough we have

$$\begin{aligned}&\int (|f|^2+|\nabla f|^2)\phi _A -(1+\frac{4}{d})Q^{\frac{4}{d}}f_1^2-Q^{\frac{4}{d}}f_2^2\textrm{d}x \nonumber \\&\quad \geqq C_1\int (|f|^2+|\nabla f|^2)\phi _A \textrm{d}x-C_2 \textrm{Scal}(f), \end{aligned}$$
(6.15)

where \(C_1, C_2>0\), and \(f_1, f_2\) are the real and imaginary parts of f, respectively.

Below we prove Proposition 2.5. For this purpose, we set \(f(z):= |z|^{\frac{4}{d}} z\), \(d=1,2\), and

$$\begin{aligned}&f^\prime (U)\cdot R := \partial _z f(U) R + \partial _{\overline{z}} f(U) \overline{R} = (1+\frac{2}{d}) |U|^\frac{4}{d} R + \frac{2}{d} |U|^{\frac{4}{d}-2} U^2 \overline{R}, \end{aligned}$$
(6.16)
$$\begin{aligned}&f^{\prime \prime }(U)\cdot R^2 := \frac{1}{d} (1+\frac{2}{d}) |U|^{\frac{4}{d} -2} \overline{U} R^2 \nonumber \\&\quad + \frac{2}{d} (1+\frac{2}{d}) |U|^{\frac{4}{d} -2} U |R|^2 + \frac{1}{d} (\frac{2}{d}-1) |U|^{\frac{4}{d} -4} U^3 \overline{R}^2, \end{aligned}$$
(6.17)
$$\begin{aligned}&f^{\prime \prime }(U,R)\cdot R^2:=R^2 \int _0^1 t \int _0^1 \partial _{zz} f(U+st R)\textrm{d}s \textrm{d}t\nonumber \\&\quad + 2 |R|^2 \int _0^1 t \int _0^1 \partial _{z\overline{z}} f(U+st R)\textrm{d}s \textrm{d}t \nonumber \\&\qquad + \overline{R}^2 \int _0^1 t \int _0^1 \partial _{\overline{z}\overline{z}} f(U+st R)\textrm{d}s \textrm{d}t. \end{aligned}$$
(6.18)

Then, we have the expansion

$$\begin{aligned} f(U+R) = f(U) + f^\prime (U)\cdot R + f^{\prime \prime }(U,R)\cdot R^2. \end{aligned}$$
(6.19)

We also get from equation (NLS) and (2.1) that (see [59, (4.11)])

$$\begin{aligned}&i\partial _tR +\sum _{k=1}^{K} (\Delta R_{k}+(1+\frac{2}{d})|U_{k}|^{\frac{4}{d}}R_{k} +\frac{2}{d}|U_{k}|^{\frac{4}{d}-2}U_{k}^2 \overline{R_{k}} \nonumber \\&\quad + i\partial _tU_{k}+\Delta U_{k}+|U_{k}|^{\frac{4}{d}}U_{k}) + \sum \limits _{k=1}^K f^{\prime \prime }(U_k) \cdot R^2 \nonumber \\&=-H_1-H_2-H_3. \end{aligned}$$
(6.20)

Here, \(H_1, H_2\) and \(H_3\) contain the interactions between different blow-up profiles

$$\begin{aligned} H_1 :&= (1+\frac{2}{d})|U|^{\frac{4}{d}}R+\frac{2}{d}|U|^{\frac{4}{d}-2}U^2\overline{R} -\sum _{k=1}^{K}((1+\frac{2}{d})|U_{k}|^{\frac{4}{d}}R_{k}+\frac{2}{d}|U_{k}|^{\frac{4}{d}-2}U_{k}^2\overline{{R}_{k}}), \end{aligned}$$
(6.21)
$$\begin{aligned} H_2 :&= |U|^{\frac{4}{d}}U-\sum _{k=1}^{K} |U_{k}|^{\frac{4}{d}}U_{k}, \end{aligned}$$
(6.22)
$$\begin{aligned} H_3 :&= f^{\prime \prime }(U,R)\cdot R^2-\sum _{k=1}^{K} f''(U_k)\cdot R^2. \end{aligned}$$
(6.23)

Moreover, we get from equation (NLS) and (2.2) that (see [59, (4.14)])

$$\begin{aligned} i\partial _tU_{k}+\Delta U_{k}+|U_{k}|^{\frac{4}{d}}U_{k}&=\frac{e^{i\theta _{k}}}{\lambda _{k}^{2+\frac{d}{2}}} \bigg \{-(\lambda _{k}^2{\dot{\theta }}_{k}-1-|\beta _{k}|^2)Q_{k} -(\lambda _{k}^2{\dot{\beta }}_{k}+\gamma _{k}\beta _{k})\nonumber \\&\quad \cdot yQ_{k} +\frac{1}{4} (\lambda _{k}^2{\dot{\gamma }}_{k}+\gamma _{k}^2) |y|^2 Q_{k} -i(\lambda _{k}{\dot{\alpha }}_{k}-2\beta _{k})\cdot \nabla Q_{k} \nonumber \\&\quad -i(\lambda _{k}\dot{\lambda _{k}}+\gamma _{k})\Lambda Q_{k} \bigg \}\left( t,\frac{x-\alpha _{k}}{\lambda _{k}}\right) , \end{aligned}$$
(6.24)

where \(Q_k\) is given by (2.15), \(1\leqq k\leqq K\). The following identity also holds (see [59, (4.28)])

$$\begin{aligned} \Delta Q_k - Q_k + |Q_k|^{\frac{4}{d}} Q_k = |\beta _k - \frac{{\gamma }_k}{2}|^2 Q_k - i {\gamma }_k \Lambda Q_k + 2i \beta _k \cdot \nabla Q_k. \end{aligned}$$
(6.25)

Proof of Proposition 2.5

The proof is similar to that of [59, Proposition 4.3], it mainly relies on the almost orthogonality in Lemma 2.4 and the decoupling Lemma 6.2.

Taking the inner product of (6.20) with \(\Lambda _k {U_{k}}\) and then taking the real part we get

$$\begin{aligned}&-\textrm{Im}\langle \partial _tR,\Lambda _k U_{k}\rangle +\textrm{Re}\langle \Delta R_{k}+(1+\frac{2}{d})|U_{k}|^{\frac{4}{d}}R_{k}+\frac{2}{d}|U_{k}|^{\frac{4}{d}-2}U_{k}^2\overline{{R}_{k}},\Lambda _k U_{k}\rangle \nonumber \\&+\textrm{Re}\langle i\partial _tU_{k}+\Delta U_{k}+|U_{k}|^{\frac{4}{d}}U_{k},\Lambda _k U_{k}\rangle + \textrm{Re} \langle f^{\prime \prime }(U_k) \cdot R^2, \Lambda _k U_k\rangle \nonumber \\&=-\textrm{Re} \bigg<\sum _{j\ne k} (\Delta R_{j}+(1+\frac{2}{d})|U_{j}|^{\frac{4}{d}}R_{j}+\frac{2}{d}|U_{j}|^{\frac{4}{d}-2}U_{j}^2\overline{{R}_{j}}) + H_1,\Lambda _k U_{k} \bigg> \nonumber \\&-\textrm{Re} \bigg< \sum _{j\ne k}( i\partial _tU_{j}+\Delta U_{j}+|U_{j}|^{\frac{4}{d}}U_{j}) + H_2,\Lambda _k U_{k} \bigg>\nonumber \\&-\textrm{Re} \bigg < \sum _{j\ne k}( f^{\prime \prime }(U_j)\cdot R^2 +H_3,\Lambda _k U_{k} \bigg >. \end{aligned}$$
(6.26)

For the R.H.S. of equation (6.26), we claim that

$$\begin{aligned} {\lambda }_k^2 \times (\mathrm{R.H.S.\ of}\ (6.26)) = {{\mathcal {O}}}\left( e^{-\frac{\delta }{T-t}}(1+Mod+ \Vert R\Vert _{L^2}+ \Vert R\Vert ^2_{L^2}) + D^3(t) \right) . \end{aligned}$$
(6.27)

To this end, we have from [59, (4.19), (4.20)] that the first two terms on the R.H.S. of (6.26) are bounded by

$$\begin{aligned} C (T-t)^{-2} e^{-\frac{\delta }{T-t}} (1+ Mod+ \Vert R\Vert _{L^2}), \end{aligned}$$
(6.28)

where \(C,\delta >0\). Moreover, by Lemma 6.2,

$$\begin{aligned} \bigg |\textrm{Re} \langle \sum _{j\ne k}( f^{\prime \prime }(U_j)\cdot R^2 ,\Lambda _k U_{k} \rangle \bigg | \leqq C (T-t)^{-2} e^{-\frac{\delta }{T-t}} \Vert R\Vert ^2_{L^2}. \end{aligned}$$
(6.29)

Using (6.18) we also have that

$$\begin{aligned}&|\textrm{Re} \langle H_3, \Lambda U_k\rangle | \nonumber \\&\quad \leqq C \sum \limits _{{{\tilde{z}}}, {{\tilde{z}}}^* \in \{z, \overline{z}\}} \bigg (\bigg<|R|^2 \int _0^1 t \int _0^1 |\partial _{{{\tilde{z}}}{{\tilde{z}}}^*} f(U) - \sum \limits _{k=1}^K \partial _{{{\tilde{z}}}{{\tilde{z}}}^*}f(U_k)|\textrm{d}s \textrm{d}t, |\Lambda _k U_k| \bigg> \nonumber \\&\qquad + \bigg < |R|^2 \int _0^1 t \int _0^1 |\partial _{\tilde{z}{{\tilde{z}}}^*} f(U+stR) - \partial _{{{\tilde{z}}}{{\tilde{z}}}^*}f(U)| \textrm{d}s \textrm{d}t, |\Lambda _k U_k|\bigg >\bigg ). \end{aligned}$$
(6.30)

Using Lemma 6.2 again we see that the first inner product above only contributes \(e^{-\frac{\delta }{T-t}}\Vert R\Vert _{L^2}^2\), while the second one can be bounded by

$$\begin{aligned} \int |R|^3 (|U|^{\frac{4}{d} -2} + |R|^{\frac{4}{d} -2}) |\Lambda _k U_k| dx&\leqq C (T-t)^{-2} (\Vert {\varepsilon }_k\Vert _{L^3}^3 +\Vert {\varepsilon }_k\Vert _{L^{1+\frac{4}{d}}}^{1+\frac{4}{d}}) \nonumber \\&\leqq C (T-t)^{-2} D^3, \end{aligned}$$
(6.31)

where the renormalized remainder \({\varepsilon }_k\) is given by (2.57) and we also used (6.2) in the last step.

Thus, combining estimates (6.286.31) and using (2.9) we obtain (6.27), as claimed.

Regarding the L.H.S. of (6.26), using the almost orthogonality (2.51), equation (6.24) and (6.25) we have that (see [59, (4.26), (4.27), (4.31)])

$$\begin{aligned} \textrm{Im}\langle \partial _t R,\Lambda _k U_{k}\rangle&= \textrm{Im}\langle \Lambda _k R_{k},\partial _t U_{k}\rangle + {{\mathcal {O}}}(e^{-\frac{\delta }{T-t}}(1+Mod) \Vert R\Vert _{L^2}), \end{aligned}$$
(6.32)
$$\begin{aligned} {\lambda }_k^2 \textrm{Im}\langle \Lambda _k R_{k},\partial _t U_{k}\rangle&= \textrm{Re}\langle \varepsilon _{k},\Lambda Q_{k}\rangle + {\gamma }_k\textrm{Im}\langle \Lambda \varepsilon _{k},\Lambda Q_{k}\rangle -2 {\beta }_k\textrm{Im}\langle \Lambda \varepsilon _{k},\nabla Q_{k}\rangle \nonumber \\&+ {{\mathcal {O}}}((Mod+P^2)\Vert R\Vert _{L^2}), \end{aligned}$$
(6.33)

and

$$\begin{aligned} {\lambda }_k^2 \textrm{Re}\langle i\partial _tU_{k}+\Delta U_{k}+|U_{k}|^{\frac{4}{d}}U_{k},\Lambda _k U_{k}\rangle = - \frac{1}{4}\Vert yQ\Vert _2^2({\lambda }_k^2\dot{{\gamma }_k}+{\gamma }_k^2) + {{\mathcal {O}}}(|\beta _k|Mod). \end{aligned}$$
(6.34)

Moreover, by (6.17) and the change of variables,

$$\begin{aligned} {\lambda }_k^2 \textrm{Re}\langle f''(U_k)\cdot R^2,\Lambda _k U_{k}\rangle&= \textrm{Re}\int (1+\frac{2}{d})|Q_k|^{\frac{4}{d}}|{\varepsilon }_k|^2 + \frac{2}{d} |Q_k|^{\frac{4}{d}-2} Q_k^2 \overline{{\varepsilon }_k}^2 \textrm{d}y \nonumber \\&+\textrm{Re}\int (y \cdot \nabla \overline{Q_k}) (f^{\prime \prime }(Q_k)\cdot {\varepsilon }^2_k) \textrm{d}y + {{\mathcal {O}}}(e^{-\frac{\delta }{T-t}}\Vert R\Vert _{L^2}^2). \end{aligned}$$
(6.35)

Thus, combining (6.326.35) altogether and rearranging the terms according to the orders of renormalized variable \({\varepsilon }_k\) we get that

$$\begin{aligned}&{\lambda }_k^2 \times (\mathrm{L.H.S.\ of}\ (6.26)) \nonumber \\&=- \frac{1}{4}\Vert yQ\Vert _2^2({\lambda }_k^2\dot{{\gamma }_k}+{\gamma }_k^2) \nonumber \\&+ \textrm{Re}\langle \Delta \varepsilon _{k}-\varepsilon _k+(1+\frac{2}{d})|Q_{k}|^{\frac{4}{d}}\varepsilon _{k}+\frac{2}{d}|Q_{k}|^{\frac{4}{d}-2}Q_{k}^2\overline{{\varepsilon }_{k}},\Lambda Q_{k}\rangle \end{aligned}$$
(6.36)
$$\begin{aligned}&- {\gamma }_k\textrm{Im}\langle \Lambda \varepsilon _{k},\Lambda Q_{k}\rangle +2{\beta }_k\textrm{Im}\langle \Lambda \varepsilon _{k},\nabla Q_{k}\rangle \end{aligned}$$
(6.37)
$$\begin{aligned}&+ \textrm{Re}\int (1+\frac{2}{d})|Q_k|^{\frac{4}{d}}|\varepsilon _k|^2 + \frac{2}{d} |Q_k|^{\frac{4}{d}-2}Q_k^2 \overline{\varepsilon _k}^2 \textrm{d}y \nonumber \\&+ \textrm{Re}\int (y \cdot \nabla \overline{Q_k})(f^{\prime \prime }(Q_k)\cdot {\varepsilon }_k^2) \textrm{d}y \end{aligned}$$
(6.38)
$$\begin{aligned}&+ {{\mathcal {O}}}\left( (Mod+P^2)\Vert R\Vert _{L^2} + P \ Mod + e^{-\frac{\delta }{T-t}}(1+Mod)\right) . \end{aligned}$$
(6.39)

For the linear part on the R.H.S. above, using the linearized operators \(L_{\pm }\) in (6.9) we have (see [59, (4.37)])

$$\begin{aligned} (6.36)+ (6.37) = {M_k } - \int |R |^2\Phi _k\textrm{d}x + {{\mathcal {O}}}( (P^2+e^{-\frac{\delta }{T-t}}) \Vert R\Vert _{L^2}) . \end{aligned}$$
(6.40)

Hence, we obtain that

$$\begin{aligned}&{\lambda }_k^2 \times (\mathrm{L.H.S.\ of}\ (6.26)) = - \frac{1}{4} \Vert yQ\Vert _{L^2}^2 ( {\lambda }_k^2 {\dot{{\gamma }}}_k + {\gamma }_k^2) + M_k - \int |R|^2 \Phi _k \textrm{d}x \nonumber \\&\quad + \textrm{Re}\int (1+\frac{2}{d})|Q_k|^{\frac{4}{d}}|\varepsilon _k|^2 + \frac{2}{d} |Q_k|^{\frac{4}{d}-2}Q_k^2 \overline{\varepsilon _k}^2 \textrm{d}y \nonumber \\&\quad + \textrm{Re}\int (y \cdot \nabla \overline{Q_k}) (f^{\prime \prime }(Q_k)\cdot {\varepsilon }_k^2) dy \nonumber \\&\quad + {{\mathcal {O}}}\left( (P+\Vert R\Vert _{L^2}+e^{-\frac{\delta }{T-t}})Mod + P^2\Vert R\Vert _{L^2} + e^{-\frac{\delta }{T-t}}\right) , \end{aligned}$$
(6.41)

which, along with (2.8) and (6.27), yields (2.56).

Moreover, we can also bound the quadratic terms of \({\varepsilon }_k\) in (6.38) by

$$\begin{aligned} (6.38) \leqq C \Vert {\varepsilon }_k\Vert _{L^2}^2 \leqq C\Vert R\Vert _{L^2}^2. \end{aligned}$$
(6.42)

This, along with (6.41), yields that

$$\begin{aligned}&{\lambda }_k^2 \times (\mathrm{L.H.S.\ of}\ (6.26)) =- \frac{1}{4}\Vert yQ\Vert _2^2({\lambda }_k^2\dot{{\gamma }_k}+{\gamma }_k^2)+ M_k \nonumber \\&\quad + {{\mathcal {O}}}\left( (P+\Vert R\Vert _{L^2}+e^{-\frac{\delta }{T-t}})Mod + P^2 \Vert R\Vert _{L^2} + \Vert R\Vert _{L^2}^2 + e^{-\frac{\delta }{T-t}}\right) . \end{aligned}$$
(6.43)

Thus, combining (6.27) and (6.43) together we obtain that, for every \(1\leqq k\leqq K\),

$$\begin{aligned}&|{\lambda }_k^2\dot{{\gamma }_k}+{\gamma }_k^2|\nonumber \\&\quad \leqq C \bigg ( (P + \Vert R\Vert _{L^2}+e^{-\frac{\delta }{T-t}} )Mod +|M_k| + P^2\Vert R\Vert _{L^2}+\Vert R\Vert _{L^2}^2 + D^3 + e^{-\frac{\delta }{T-t}} \bigg ), \end{aligned}$$
(6.44)

which, along with (2.54) and (2.61), yields that

$$\begin{aligned}&\sum _{k=1}^{K}|{\lambda }_k^2\dot{{\gamma }_k}+{\gamma }_k^2| \nonumber \\&\quad \leqq C \bigg ( (P+ \Vert R\Vert _{L^2}+e^{-\frac{\delta }{T-t}})Mod +\sum _{k=1}^{K} |M_k| +P^2 D +D^2 + e^{-\frac{\delta }{T-t}} \bigg ). \end{aligned}$$
(6.45)

Similar arguments apply also to the remaining four modulation equations. Actually, taking the inner products of equation (6.20) with \(i(x-{\alpha }_k) U_k\), \(i|x-{\alpha }_k|^2 {U_k}\), \(\nabla {U_k}\), \(\varrho _{k}\), respectively, then taking the real parts and using analogous arguments as above, we obtain

$$\begin{aligned} Mod&\leqq C\bigg ( (P+\Vert R\Vert _{L^2}+e^{-\frac{\delta }{T-t}})Mod +\sum _{k=1}^{K} |M_k| + P^2 D + D^2 + e^{-\frac{\delta }{T-t}} \bigg ). \end{aligned}$$
(6.46)

Therefore, using (2.6) and (2.7) we may take t close to T such that \(P(t)+ \Vert R(t)\Vert _{L^2} + e^{-\frac{\delta }{T-t}}\) is sufficiently small to obtain (2.53). The proof of Proposition 2.5 is complete. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Su, Y. & Zhang, D. On Uniqueness of Multi-bubble Blow-Up Solutions and Multi-solitons to \(L^2\)-Critical Nonlinear Schrödinger Equations. Arch Rational Mech Anal 247, 4 (2023). https://doi.org/10.1007/s00205-022-01832-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-022-01832-x

Navigation