Skip to main content
Log in

The Number of Traveling Wave Families in a Running Water with Coriolis Force

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study the number of traveling wave families near a shear flow under the influence of Coriolis force, where the traveling speeds lie outside the range of the flow u. Under the \(\beta \)-plane approximation, if the flow u has a critical point at which u attains its minimal (resp. maximal) value, then a unique transitional \(\beta \) value exists in the positive (resp. negative) half-line such that the number of traveling wave families near the shear flow changes suddenly from finite to infinite when \(\beta \) passes through it. On the other hand, if u has no such critical points, then the number is always finite for positive (resp. negative) \(\beta \) values. This is true for general shear flows under mildly technical assumptions, and for a large class of shear flows including a cosine jet \(u(y) = {1+\cos (\pi y)\over 2}\) (i.e. the sinus profile) and analytic monotone flows unconditionally. The sudden change of the number of traveling wave families indicates that long time dynamics around the shear flow is much richer than the non-rotating case, where no such traveling wave families exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barcilon, A., Drazin, P.G.: Nonlinear waves of vorticity. Stud. Appl. Math. 106, 437–479, 2001

    MathSciNet  MATH  Google Scholar 

  2. Balmforth, N.J., Piccolo, C.: The onset of meandering in a barotropic jet. J. Fluid Mech. 449, 85–114, 2001

    ADS  MathSciNet  MATH  Google Scholar 

  3. Bedrossian, J., Masmoudi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publ. Math. Inst. Hautes Études Sci. 122, 195–300, 2015

    MathSciNet  MATH  Google Scholar 

  4. Buchanan, M., Dorning, J.J.: Superposition of nonlinear plasma waves. Phys. Rev. Lett. 70, 3732–3735, 1993

    ADS  Google Scholar 

  5. Buchanan, M., Dorning, J.J.: Near equilibrium multiple-wave plasma states. Phys. Rev. E 50, 1465–1478, 1994

    ADS  Google Scholar 

  6. Case, K.M.: Stability of inviscid plane Couette flow. Phys. Fluids 3, 143–148, 1960

    ADS  MathSciNet  MATH  Google Scholar 

  7. Crandall, M., Rabinowitz, P.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340, 1971

    MathSciNet  MATH  Google Scholar 

  8. Coti Zelati, M., Elgindi, T. M., Widmayer, K.: Stationary structures near the Kolmogorov and Poiseuille flows in the 2D Euler equations. Preprint, arXiv:2007.11547

  9. Demeio, L., Zweifel, P.F.: Numerical simulations of perturbed Vlasov equilibria. Phys. Fluids B 2, 1252–1255, 1990

    ADS  Google Scholar 

  10. Drazin, P.G.: Introduction to Hydrodynamic Stability. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  11. Elgindi, T.M., Widmayer, K.: Long time stability for solutions of a \(\beta \)-plane equation. Commun. Pure Appl. Math. 70, 1425–1471, 2017

    MathSciNet  MATH  Google Scholar 

  12. Engevik, L.: A note on the barotropic instability of the Bickley jet. J. Fluid Mech. 499, 315–326, 2004

    ADS  MathSciNet  MATH  Google Scholar 

  13. Fjørtoft, R.: Application of integral theorems in deriving criteria of stability of laminar flow and for baroclinic circular vortex. Geofys. Publ. Norske Vid.-Akad. Oslo 17, 1–52, 1950

    MathSciNet  Google Scholar 

  14. Grenier, E., Nguyen, T.T., Rousset, F., Soffer, A.: Linear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator method. J. Funct. Anal. 278, 108339, 2020

    MathSciNet  MATH  Google Scholar 

  15. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988).reprint of the 1952 edition.

    Google Scholar 

  16. Howard, L.N., Drazin, P.G.: On instability of a parallel flow of inviscid fluid in a rotating system with variable Coriolis parameter. J. Math. Phys. 43, 83–99, 1964

    MathSciNet  Google Scholar 

  17. Ionescu, A., Jia, H.: Inviscid damping near the Couette flow in a channel. Commun. Math. Phys. 374, 2015–2096, 2020

    ADS  MathSciNet  MATH  Google Scholar 

  18. Ionescu, A., Jia, H.: Nonlinear inviscid damping near monotonic shear flows. Preprint, arXiv:2001.03087

  19. Jia, H.: Linear inviscid damping in Gevrey spaces. Arch. Ration. Mech. Anal. 235, 1327–1355, 2020

    MathSciNet  MATH  Google Scholar 

  20. Jia, H.: Linear inviscid damping near monotone shear flows. SIAM J. Math. Anal. 52, 623–652, 2020

    MathSciNet  MATH  Google Scholar 

  21. Kong, Q., Wu, H., Zettl, A.: Dependence of the \(n\)-th Sturm–Liouville eigenvalue on the problem. J. Differ. Equ. 156, 328–354, 1999

    ADS  MathSciNet  MATH  Google Scholar 

  22. Kuo, H.L.: Dynamic instability of two-dimensional non-divergent flow in a barotropic atmosphere. J. Meteor. 6, 105–122, 1949

    Google Scholar 

  23. Kuo, H.L.: Dynamics of quasi-geostrophic flows and instability theory. Adv. Appl. Mech. 13, 247–330, 1974

    Google Scholar 

  24. Lancellotti, C., Dorning, J.J.: Nonlinear Landau damping. Transport Theor. Stat. 38, 1–146, 2009

    MathSciNet  MATH  Google Scholar 

  25. Li, C.Y., Lin, Z.: A resolution of the Sommerfeld Paradox. SIAM J. Math. Anal. 43, 1923–1954, 2011

    MathSciNet  MATH  Google Scholar 

  26. Lin, Z.: Instability of some ideal plane flows. SIAM J. Math. Anal. 35, 318–356, 2003

    MathSciNet  MATH  Google Scholar 

  27. Lin, Z., Yang, J., Zhu, H.: Barotropic instability of shear flows. Stud. Appl. Math. 144, 289–326, 2020

    MathSciNet  MATH  Google Scholar 

  28. Lin, Z., Zeng, C.: Inviscid dynamic structures near Couette flow. Arch. Rat. Mech. Anal. 200, 1075–1097, 2011

    MATH  Google Scholar 

  29. Lipps, F.B.: The barotropic stability of the mean winds in the atmosphere. J. Fluid Mech. 12, 397–407, 1962

    ADS  MATH  Google Scholar 

  30. Majda, A.: Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes in Mathematics, vol. 9. New York University, Courant Institute of Mathematical Sciences, New York (2003)

    MATH  Google Scholar 

  31. Maslowe, S.A.: Barotropic instability of the Bickley jet. J. Fluid Mech. 229, 417–426, 1991

    ADS  MathSciNet  MATH  Google Scholar 

  32. Masmoudi, N.: About the Hardy inequality. In: Schleicher, D., Lackmann, M. (eds.) An Invitation to Mathematics. Springer, Berlin (2011)

    Google Scholar 

  33. Masmoudi, N., Zhao, W.: Nonlinear inviscid damping for a class of monotone shear flows in finite channel. Preprint, arXiv:2001.08564

  34. McWilliams, J.C.: Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  35. Pedlosky, J.: Geophysical Fluid Dynamics, 2nd edn. Springer, New York (1987)

    MATH  Google Scholar 

  36. Pusateri, F., Widmayer, K.: On the global stability of a \(\beta \)-plane equation. Anal. PDE 11, 1587–1624, 2018

    MathSciNet  MATH  Google Scholar 

  37. Orr, W.: Stability and instability of steady motions of a perfect liquid. Proc. Ir. Acad. Sect. A: Math Astron. Phys. Sci. 27, 9–66, 1907

    Google Scholar 

  38. Rayleigh, L.: On the stability or instability of certain fluid motions. Proc. Lond. Math. Soc. 9, 57–70, 1880

    MathSciNet  MATH  Google Scholar 

  39. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press [Harcourt Brace Jovanovich, Publishers], New York (1978)

    MATH  Google Scholar 

  40. Rosencrans, S.I., Sattinger, D.H.: On the spectrum of an operator occurring in the theory of hydrodynamic stability. J. Math. Phys. 45, 289–300, 1966

    MathSciNet  MATH  Google Scholar 

  41. Rossby, C.G.: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res. 2, 38–55, 1939

    Google Scholar 

  42. Tung, K.K.: Barotropic instability of zonal flows. J. Atmos. Sci. 38, 308–321, 1981

    ADS  MathSciNet  Google Scholar 

  43. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping for a class of monotone shear flow in Sobolev spaces. Commun. Pure Appl. Math. 71, 617–687, 2018

    MathSciNet  MATH  Google Scholar 

  44. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and vorticity depletion for shear flows. Ann. PDE 5(3), 101, 2019

    MathSciNet  MATH  Google Scholar 

  45. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and enhanced dissipation for the Kolmogorov flow. Adv. Math. 362, 106963, 2020

    MathSciNet  MATH  Google Scholar 

  46. Wei, D., Zhang, Z., Zhu, H.: Linear inviscid damping for the \(\beta \)-plane equation. Commun. Math. Phys. 375, 127–174, 2020

    ADS  MathSciNet  MATH  Google Scholar 

  47. Zillinger, C.: Linear inviscid damping for monotone shear flows. Trans. Am. Math. Soc. 369, 8799–8855, 2017

    MathSciNet  MATH  Google Scholar 

  48. Zillinger, C.: Linear inviscid damping for monotone shear flows in a finite periodic channel, boundary effects, blow-up and critical Sobolev regularity. Arch. Ration. Mech. Anal. 221, 1449–1509, 2016

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Zhiwu Lin is partially supported by the NSF grants DMS-1715201 and DMS-2007457. Zhifei Zhang is partially supported by NSF of China under Grant 11425103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifei Zhang.

Additional information

Communicated by N. Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Wei, D., Zhang, Z. et al. The Number of Traveling Wave Families in a Running Water with Coriolis Force. Arch Rational Mech Anal 246, 475–533 (2022). https://doi.org/10.1007/s00205-022-01819-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-022-01819-8

Navigation