Skip to main content
Log in

On Non-uniqueness of Continuous Entropy Solutions to the Isentropic Compressible Euler Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the Cauchy problem for the isentropic compressible Euler equations in a three-dimensional periodic domain under general pressure laws. For any smooth initial density away from the vacuum, we construct infinitely many entropy solutions with no presence of shock. In particular, the constructed density is smooth and the momentum is \(\alpha \)-Hölder continuous for \(\alpha <1/7\). Also, we provide a continuous entropy solution satisfying the entropy inequality strictly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For discussions on different-type of admissible conditions such as mixing entropy or maximal entropy production, see [7, 8] for example.

  2. Here and in the rest of that pages, given two quantities \(A_q\) and \(B_q\) depending on the induction parameter q we will use the notation \(A\lesssim B\) meaning that \(A\leqslant CB\) for some constant C which is independent of q. We also use the notation \(A \lesssim _{\varrho ,p} B\) to mean \(A\leqslant C(\varrho ,p) B\) for some constant that depends on \(\varrho \) and p and is independent of q. More precisely, the constant will depend on \(\varepsilon _0\) and the \(C^N\) norms of \(\varrho \) and p for \(N\leqslant 2n_0\) where \(n_0\) is the constant defined in Corollary 7.2. In some situations we will need to be more specific and then we will explicitly the dependence of C on the various parameters involved in our arguments.

References

  1. Buckmaster, T.: Onsager’s conjecture. Ph.D. thesis, Universität Leipzig, 2014

  2. Buckmaster, T.: Onsager’s conjecture almost everywhere in time. Commun. Math. Phys. 333(3), 1175–1198, 2015

  3. Buckmaster, T., De Lellis, C., Isett, P., Székelyhidi, L., Jr.: Anomalous dissipation for 1/5-Hölder Euler flows. Ann. Math. 182(1), 127–172, 2015

    Article  MathSciNet  Google Scholar 

  4. Buckmaster, T., De Lellis, C., Székelyhidi Jr. L.: Transporting microstructure and dissipative Euler flows. arXiv:1302.2815, 02 2013

  5. Buckmaster, T., De Lellis, C., Székelyhidi, L., Jr.: Dissipative Euler flows with Onsager-critical spatial regularity. Commun. Pure Appl. Math. 69(9), 1613–1670, 2016

    Article  MathSciNet  Google Scholar 

  6. Buckmaster, T., De Lellis, C., Székelyhidi Jr. L., Vicol, V.: Onsager’s conjecture for admissible weak solutions. Commun. Pure Appl. Math. 72(2):229–274, 2019

  7. Chen, G.-Q.G., Glimm, J.: Kolmogorov-type theory of compressible turbulence and inviscid limit of the Navier–Stokes equations in \({\mathbb{R}}^3\). Phys. D Nonlinear Phenom. 400, 132138, 2019

    Article  Google Scholar 

  8. Chen, G.-Q. G., Glimm, J., Lazarev, D.: Maximum entropy production as a necessary admissibility condition for the fluid Navier–Stokes and Euler equations. SN Appl. Sci. 2(2160), 2020

  9. Chen, R.M., Vasseur, A.F., Yu, C.: Global ill-posedness for a dense set of initial data to the isentropic system of gas dynamics. arXiv:2103.04905v1, 2021

  10. Chiodaroli, E.: A counterexample to well-posedness of entropy solutions to the compressible Euler system. J. Hyperbolic Differ. Equ. 11(3):493–519, 2014

  11. Chiodaroli, E., De Lellis, C., Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. 58, 1157–1190, 2015

    Article  MathSciNet  Google Scholar 

  12. Chiodaroli, E., Kreml, O., Mácha, V., Schwarzacher, S.: Non-uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial data. Trans. Am. Math. Soc. 374(4), 2269–2295, 2021

    Article  MathSciNet  Google Scholar 

  13. Constantin, P., Weinan, E., Titi, E.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165(1):207–209, 1994

  14. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Springer, New York, 1976

  15. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, 3rd edn. Springer, Berlin, 2010

  16. Daneri, S., Székelyhidi, L.: Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 224(2), 471–514, 2017

    Article  MathSciNet  Google Scholar 

  17. De Lellis, C., Kwon, H.: On non-uniqueness of Hölder continuous globally dissipative Euler flows. arXiv:2006.06482, 2020

  18. De Lellis, C., Székelyhidi, L.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260, 2010

    Article  MathSciNet  Google Scholar 

  19. De Lellis, C., Székelyhidi, Jr. L.: The \(h\)-principle and the equations of fluid dynamics. Bull. Am. Math. Soc. (N.S.) 49(3), 347–375, 2012

  20. De Lellis, C., Székelyhidi, L., Jr.: Dissipative continuous Euler flows. Invent. Math. 193(2), 377–407, 2013

    Article  ADS  MathSciNet  Google Scholar 

  21. De Lellis, C., Székelyhidi, L., Jr.: Dissipative Euler flows and Onsager’s conjecture. J. Eur. Math. Soc. (JEMS) 16(7), 1467–1505, 2014

  22. Drivas, T., Eyink, G.: An Onsager singularity theorem for turbulent solutions of compressible Euler equations. Commun. Math. Phys. 359, 733–763, 2018

    Article  MathSciNet  Google Scholar 

  23. Elling, V.: A possible counterexample to wellposedness of entropy solutions and to Godunov scheme convergence. Math. Comput. 75(256), 1721–1733, 2006

    Article  ADS  Google Scholar 

  24. Feireisl, E., Gwiazda, P., Świerczewska Gwiazda, A., Wiedemann, E.: Regularity and energy conservation for the compressible Euler equations. Arch. Ration. Mech. Anal. 223, 1375–1395, 2017

    Article  MathSciNet  Google Scholar 

  25. Ghoshal, S.S., Jana, A., Koumatos, K.: On the uniqueness of solutions to hyperbolic systems of conservation laws. J. Differ. Equ. 291, 110–153, 2021

    Article  ADS  MathSciNet  Google Scholar 

  26. Gwiazda, P., Michálek, M., Świerczewska Gwiazda, A.: A note on weak solutions of conservation laws and energy/entropy conservation. Arch. Ration. Mech. Anal. 229, 1223–1238, 2018

    Article  MathSciNet  Google Scholar 

  27. Isett, P.: Hölder continuous Euler flows with compact support in time. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)—Princeton University, 2013

  28. Isett, P.: Nonuniqueness and existence of continuous, globally dissipative Euler flows. arXiv:1710.11186, 2017

  29. Isett, P.: A proof of Onsager’s conjecture. Ann. Math. 188(3), 871–963, 2018

  30. Isett, P., Oh, S.-J.: On nonperiodic Euler flows with Hölder regularity. Arch. Ration. Mech. Anal. 221(2), 725–804, 2016

    Article  MathSciNet  Google Scholar 

  31. Isett, P., Vicol, V.: Hölder continuous solutions of active scalar equations. Ann. PDE 1(1), 1–77, 2015

    Article  MathSciNet  Google Scholar 

  32. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58(3), 181–205, 1975

    Article  MathSciNet  Google Scholar 

  33. Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Society for Industrial and Applied Mathematics, 1973

  34. Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Applied Mathematical Sciences. Springer, New York, 1984

  35. Markfelder, S.: Convex integration applied to the multi-dimensional compressible Euler equations. Springer Lecture Notes in Mathematics, Vol. 2294, 2020

  36. Markfelder, S., Klingenberg, C.: The Riemann problem for the multidimensional isentropic system of gas dynamics is ill-posed if it contains a shock. Arch. Ration. Mech. Anal. 227, 967–994, 2018

    Article  MathSciNet  Google Scholar 

  37. Nash, J.: \(C^1\) isometric imbeddings. Ann. Math. 2(60), 383–396, 1954

    Article  Google Scholar 

  38. Onsager, L.: Statistical hydrodynamics. Il Nuovo Cimento 1943–1954(6), 279–287, 1949

    Article  MathSciNet  Google Scholar 

  39. Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Intersciences, New York, 1974

  40. Wiedemann, E.: Weak-strong uniqueness in fluid dynamics. Partial Differential Equations in Fluid Mechanics (London Mathematical Society Lecture Note Series), 289–326, 2018

Download references

Acknowledgements

The first author has been supported by the National Science Foundation under Grant No. DMS-FRG-1854344. The second author has been supported by the NSF under Grant No. DMS-1926686. The authors are grateful to Camillo De Lellis for helpful discussions and his contribution to Section 2.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Giri.

Additional information

Communicated by A. Bressan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Some Technical Lemmas

Appendix A. Some Technical Lemmas

The proof of the following two lemmas can be found in [6, Appendix]:

Lemma A.1

(Hölder norm of compositions). Suppose \(F:\Omega \rightarrow \mathbb {R}\) and \(\Psi : \mathbb {R}^n \rightarrow \Omega \) are smooth functions for some \(\Omega \subset \mathbb {R}^m\). Then, for each \(N\in \mathbb {N}\), we have

$$\begin{aligned}&\Vert \nabla ^N (F\circ \Psi )\Vert _0 \lesssim \Vert \nabla F\Vert _0 \Vert \nabla \Psi \Vert _{N-1} + \Vert \nabla F\Vert _{N-1} \Vert \Psi \Vert _0^{N-1}\Vert \Psi \Vert _N \nonumber \\&\Vert \nabla ^N (F\circ \Psi )\Vert _0 \lesssim \Vert \nabla F\Vert _0 \Vert \nabla \Psi \Vert _{N-1} + \Vert \nabla F\Vert _{N-1} \Vert \nabla \Psi \Vert _0^{N} , \end{aligned}$$
(A.1)

where the implicit constant in the inequalities depends only on n, m, and N.

Lemma A.2

Let \(N\geqslant 1\). Suppose that \(a\in C^\infty (\mathbb {T}^3)\) and \(\xi \in C^\infty (\mathbb {T}^3;\mathbb {R}^3)\) satisfies

$$\begin{aligned} \frac{1}{C} \leqslant |\nabla \xi | \leqslant C \end{aligned}$$

for some constant \(C>1\). Then, we have

$$\begin{aligned} \left| \int _{\mathbb {T}^3} a(x) e^{ik\cdot \xi } \mathrm{d}x \right| \lesssim \frac{\Vert a\Vert _N + \Vert a\Vert _0\Vert {\nabla } \xi \Vert _{N}}{|k|^N} , \end{aligned}$$

where the implicit constant in the inequality is depending on C and N, but independent of k.

The following lemmas contain various commutator estimates, used in the proof.

Lemma A.3

Let f and g be in \(C^\infty ([0,T]\times \mathbb {T}^3)\) and set \(f_\ell = P_{\leqslant \ell ^{-1} } f\), \(g_\ell = P_{\leqslant \ell ^{-1}} g\) and \((fg)_\ell = P_{\leqslant \ell ^{-1}} (fg)\). Then, for each \(N \geqslant 0\), the following holds,

$$\begin{aligned} \Vert f_\ell g_\ell - (fg)_\ell \Vert _N \lesssim _N \ell ^{2-N} \Vert f\Vert _1\Vert g\Vert _1. \end{aligned}$$
(A.2)

Proof

Since the expression that we need to estimate is localized in frequency, by Bernstein’s inequality it suffices to prove the case \(N=0\). Recall now the function \(\phi \) used to define the Littlewood-Paley operators and the number J, which is the maximal natural number such that \(2^J \leqslant \ell ^{-1}\). Denoting by the inverse Fourier transform and by the function , a simple computation (see for instance [13]) gives

and the claim easily follows. \(\square \)

Lemma A.4

Let f and g be in \(C^\infty ([0,T]\times \mathbb {T}^3)\) and set \(f_\ell = P_{\leqslant \ell ^{-1} } f\) and \((fg)_\ell = P_{\leqslant \ell ^{-1}} (fg)\). Then, for each \(N \geqslant 0\), the following holds,

$$\begin{aligned} \begin{aligned} \Vert [g, P_{\leqslant \ell ^{-1}}]f\Vert _0&\lesssim \ell \Vert f\Vert _0\Vert \nabla g\Vert _0 \\ \Vert [g, P_{\leqslant \ell ^{-1}}]f\Vert _N&\lesssim _N \ell ^{1-N} \Vert f\Vert _0\Vert g\Vert _{\max \{1,N\}}. \end{aligned}\end{aligned}$$
(A.3)

In particular, for any smooth function \(v, F\in C^\infty (\mathbb {T}^3)\) and for each \(N\geqslant 0\), we have

$$\begin{aligned}&\Vert [v\cdot \nabla , {P}_{\leqslant \ell ^{-1}}]F\Vert _0=\Vert [v\cdot \nabla , {P}_{> \ell ^{-1}}] F\Vert _{0} \lesssim \ell \Vert \nabla F\Vert _0\Vert \nabla v\Vert _0 \end{aligned}$$
(A.4)
$$\begin{aligned}&\Vert [v \cdot \nabla , {P}_{\leqslant \ell ^{-1}}]F\Vert _N =\Vert [v\cdot \nabla , {P}_{> \ell ^{-1}}] F\Vert _{N}\lesssim _N \ell ^{1-N}\Vert \nabla F\Vert _0\Vert v\Vert _{\max \{1,N\}}. \end{aligned}$$
(A.5)

Remark A.5

When v has the frequency localized to \(\ell ^{-1}\), using the Bernstein’s inequality, (A.5) can be improved to \(\Vert [v\cdot \nabla , {P}_{\leqslant \ell ^{-1}}]F\Vert _N\lesssim _N \ell ^{1-N}\Vert \nabla v\Vert _0\Vert \nabla F\Vert _0\).

Proof

We first write

Then, (A.3) is obtained as \(\Vert f_\ell g - (fg)_\ell \Vert _0 \leqslant \ell \Vert f\Vert _0\Vert \nabla g\Vert _0 \) and

for some constants \(c_{N_1,N}\). Since we have

$$\begin{aligned}{}[v\cdot \nabla , {P}_{> \ell ^{-1}}] F (x)&= v\cdot \nabla ({P}_{> \ell ^{-1}}F -F)+(v\cdot \nabla F) - {P}_{> \ell ^{-1}}(v\cdot \nabla F) \\&= -v \cdot \nabla {P}_{\leqslant \ell ^{-1}} F + {P}_{\leqslant \ell ^{-1}} (v \cdot \nabla F) = - [v\cdot \nabla , {P}_{\leqslant \ell ^{-1}}] F, \end{aligned}$$

we apply (A.3) to \(g=v_i\) and \(f=\partial _i F\), then (A.4) and (A.5) follow. \(\square \)

Lemma A.6

For a fixed \(\overline{N}\in {\mathbb {N}}\), if v and g satisfy

$$\begin{aligned} \Vert v\Vert _N \lesssim _{{\overline{N}}} \ell ^{-N}v_F, \quad \Vert g\Vert _N \lesssim _{{\overline{N}}} g_F \end{aligned}$$

for all integer \(N\in [1, \overline{N}]\) and for some positive constants \(v_F\) and \(g_F\), then we have

$$\begin{aligned} \Vert [v \cdot \nabla , P_{\leqslant \ell ^{-1}}](fg)-([v \cdot \nabla , P_{\leqslant \ell ^{-1}}]f) g\Vert _{N} \lesssim \ell ^{1-N}\Vert \nabla f\Vert _0 v_F g_F +\ell ^{-N}\Vert f\Vert _0v_Fg_F, \end{aligned}$$
(A.6)

for any integer \(N\in [0,{\overline{N}}]\).

Proof

We first write

Then, (A.6) follows from

\(\square \)

Lemma A.7

For vector-valued functions H and v in \(C^\infty ([0,T]\times \mathbb {T}^3)\), it holds that

$$\begin{aligned} \Vert [P_{\lesssim \ell ^{-1}}v \cdot \nabla , {\mathcal {R}}]P_{\gtrsim \lambda _{q+1}} H\Vert _{N-1} \lesssim \sum _{N_1+N_2=N-1} \ell \Vert \nabla v\Vert _{N_1} \Vert H\Vert _{N_2} \end{aligned}$$

for \(N=1,2\), where \({\mathcal {R}}= \Delta ^{-1}\nabla \).

Proof

For convenience, we write \(v_\ell := P_{\lesssim \ell ^{-1}}v\) and \(H_j = P_{2^j}H\) for for \(2^j \gtrsim \lambda _{q+1}\). We first use the Fourier expansion and the Taylor’s theorem to get

$$\begin{aligned}&{-}[v_{\ell } \cdot \nabla , {\mathcal {R}}]H_j \nonumber \\&\quad = \sum _{k, \eta \in \mathbb {Z}^3} ({\mathscr {F}}[{\mathcal {R}}](k)-{\mathscr {F}}[{\mathcal {R}}](\eta )) i\eta \cdot {\mathscr {F}}[ v_\ell ](k-\eta ) {\mathscr {F}}[H_j] (\eta ) e^{ik\cdot x}\nonumber \\&\quad = \sum _{k, \eta \in \mathbb {Z}^3} \sum _{l=1}^{l_0} \frac{1}{l!}[(k-\eta )\cdot \nabla ]^l {\mathscr {F}}[{\mathcal {R}}](\eta ) i\eta \cdot {\mathscr {F}}[v_\ell ](k-\eta ) {\mathscr {F}}[H_j] (\eta ) e^{ik\cdot x}\nonumber \\&\begin{aligned}&\qquad + \frac{1}{l_0!} \sum _{k, \eta \in \mathbb {Z}^3} \int _0^1 [(k-\eta )\cdot \nabla ]^{l_0+1} {\mathscr {F}}[{\mathcal {R}}](\eta + \sigma (k-\eta ))(1-\sigma )^{l_0} d\sigma i\eta \\&\qquad \cdot {\mathscr {F}}[ v_\ell ](k-\eta ) {\mathscr {F}}[H_j] (\eta ) e^{ik\cdot x}, \end{aligned} \end{aligned}$$
(A.7)

where \(l_0>2\), independent of q, is chosen to satisfy \((\ell ^{-1}\lambda _{q+1}^{-1})^{l_0} \lambda _{q+1}^3\lesssim 1\). The first term can be written as \(\sum _{l=1}^{l_0}\frac{1}{l!} \nabla ^l v_\ell : \nabla {\mathcal {R}}_l H_j\) where the operator \({\mathcal {R}}_l\) has a Fourier multiplier defined by \({\mathscr {F}}[{\mathcal {R}}_l g](\eta ) = { (-i)^l}\nabla _\eta ^l {\mathscr {F}}[{\mathcal {R}}](\eta ) {\mathscr {F}}[g](\eta )\).

Using this decomposition, we now estimate

$$\begin{aligned}&\left\| \sum _{l=1}^{l_0}\frac{1}{l!} \nabla ^l v_\ell : \nabla {\mathcal {R}}_l P_{\gtrsim \lambda _{q+1}} H\right\| _{N-1} \\&\quad \lesssim \sum _{N_1+N_2=N-1} \sum _{l=1}^{l_0}\frac{1}{l!} \Vert \nabla ^l v_\ell \Vert _{N_1}\Vert \nabla {\mathcal {R}}_l P_{\gtrsim \lambda _{q+1}} H\Vert _{N_2}\\&\quad \lesssim \sum _{N_1+N_2=N-1} \sum _{l=1}^{l_0}\frac{\ell ^{1-l}}{l!} \Vert \nabla v \Vert _{N_1} \sum _{2^j\gtrsim \lambda _{q+1}}\Vert K_{l,j}\Vert _{L^1} \Vert H\Vert _{N_2}\\&\quad \lesssim \sum _{N_1+N_2=N-1} \ell \Vert \nabla v \Vert _{N_1} \Vert H\Vert _{N_2}, \end{aligned}$$

where \(K_{l,j}\) is the kernel of the operator \(\nabla {\mathcal {R}}_l P_{2^j}\) and the last estimate follows from

$$\begin{aligned} K_{l,j} = 2^{j(-l+3)}K_{l,0}(2^j \cdot ), \quad \sum _{2^j\gtrsim \lambda _{q+1}}\Vert K_{l,j}\Vert _{L^1(\mathbb {R}^3)} \lesssim \lambda _{q+1}^{-l} \Vert K_{l,0}\Vert _{L^1(\mathbb {R}^3)}. \end{aligned}$$

The remaining term can be estimated as follows: since \(|k-\eta |\leqslant \frac{1}{2} |\eta |\) and hence \(|k|\lesssim |\eta |\), we get

$$\begin{aligned} \left\| \nabla ^{N-1} \sum _{2^j\gtrsim \lambda _{q+1}} (A.7)\right\| _0&\lesssim {\sum _{2^j\gtrsim \lambda _{q+1}}}\sum _{k, \eta \in \mathbb {Z}^3} |k|^{N-1} \frac{|k-\eta |^{l_0+1}}{|\eta |^{l_0+1}} |{\mathscr {F}}[v_\ell ](k-\eta )| |{\mathscr {F}}[H_j] (\eta )|\\&\lesssim \sum _{2^j\gtrsim \lambda _{q+1}}\sum _{k, \eta \in \mathbb {Z}^3} \frac{|k-\eta |^{l_0}}{|\eta |^{l_0+1}} |{\mathscr {F}}[\nabla v_\ell ](k-\eta )| |\eta |^{N-1}|{\mathscr {F}}[H_j] (\eta )|\\&\lesssim \sum _{2^j\gtrsim \lambda _{q+1}} \sum _{|k|\lesssim 2^j} (\ell ^{-1}2^{-j})^{l_0} 2^{-j} \Vert \nabla v\Vert _{L^2(\mathbb {T}^3)}\Vert {\nabla ^{N-1}}H_j\Vert _{L^2(\mathbb {T}^3)}\\&\lesssim \sum _{2^j\gtrsim \lambda _{q+1}} (\ell ^{-1}2^{-j})^{l_0} 2^{2j} \Vert \nabla v\Vert _{L^2(\mathbb {T}^3)}\Vert \nabla ^{N-1}H_j\Vert _{L^2(\mathbb {T}^3)}\\&\lesssim (\ell ^{-1}\lambda _{q+1}^{-1})^{l_0} \lambda _{q+1}^2 \Vert \nabla v\Vert _0 \Vert H\Vert _{N-1} \lesssim \lambda _{q+1}^{-1}\Vert \nabla v\Vert _0 \Vert H\Vert _{N-1}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, V., Kwon, H. On Non-uniqueness of Continuous Entropy Solutions to the Isentropic Compressible Euler Equations. Arch Rational Mech Anal 245, 1213–1283 (2022). https://doi.org/10.1007/s00205-022-01802-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-022-01802-3

Navigation