Skip to main content
Log in

Incompressible Limit of Three Dimensional Compressible Viscoelastic Systems with Vanishing Shear Viscosity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This work concerns the incompressible limit of compressible viscoelastic systems when the shear viscosity converges to zero. The incompressible limit is characterised by the large value of the volume viscosity. In the limit, the dispersive effect of pressure waves disappears and the global convergence to the limit system around an equilibrium is justified with the help of vector fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Agemi, R.: Global existence of nonlinear elastic wavs. Invent. Math. 142(2), 225–250, 2000

    Article  ADS  MathSciNet  Google Scholar 

  2. Cai, Y., Lei, Z., Lin, F., Masmoudi, N.: Vanishing viscosity limit for incompressible viscoelasticity in two dimensions. Commun. Pure Appl. Math. 72(10), 2063–2120, 2019

    Article  MathSciNet  Google Scholar 

  3. Dafermos, C.: Hyperbolic conservation laws in continuum physics. Fourth edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 325. Springer, Berlin, 2016

  4. Danchin, R., Mucha, P.: Compressible Navier–Stokes system: large solutions and incompressible limit. Adv. Math. 320, 904–925, 2017

    Article  MathSciNet  Google Scholar 

  5. Hu, X., Wang, D.: Local strong solution to the compressible viscoelastic flow with large data. J. Differ. Equ. 249(5), 1179–1198, 2010

    Article  ADS  MathSciNet  Google Scholar 

  6. Hu, X., Wang, D.: Global existence for the multi-dimensional compressible viscoelastic flows. J. Differ. Equ. 250(2), 1200–1231, 2011

    Article  ADS  MathSciNet  Google Scholar 

  7. Hu, X., Wu, G.: Global existence and optimal decay rates for three-dimensional compressible viscoelastic flow. SIAM J. Math. Anal. 45(5), 2815–2833, 2013

    Article  MathSciNet  Google Scholar 

  8. Hu, X., Zhao, W.: Global existence for the compressible viscoelastic system with zero shear viscosity in three dimensions. J. Differ. Equ. 268(4), 1658–1685, 2020

    Article  ADS  MathSciNet  Google Scholar 

  9. Hu, X., Zhao, W.: Global existence of compressible dissipative elastodynamics systems with zero shear viscosity in two dimensions. Arch. Ration. Mech. Anal. 235, 1177–1243, 2020

    Article  MathSciNet  Google Scholar 

  10. John, F.: Formation of singularities in elastic wave. Trends and Applications of Pure Mathematics to Mechanics (Palaiseau, 1983), 194–210. Lecture Notes in Physics Vol. 195. Springer, Berlin, 1984

  11. John, F.: Almost global existence of elastic waves if finite amplitude arising from small initial disturbances. Commun. Pure Appl. Math. 41(5), 615–666, 1988

    Article  Google Scholar 

  12. Jonov, B., Sideris, T.C.: Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms. Commun. Pure Appl. Anal. 14(4), 1407–1442, 2015

    Article  MathSciNet  Google Scholar 

  13. Jonov, B., Kessenich, P., Sideris, T.C.: Global existence of small displacement solutions for Hookean incompressible viscoelasticity in 3D. arXiv: 2106.16071

  14. Kessenich, P.: Global existence with small initial data for three dimensional incompressible isotropic viscoelastic materials. Ph.D. thesis, University of California, Santa Barbara, ProQuest LLC, Ann Arbor, MI, 2008

  15. Klainerman, S., Sideris, T.C.: Almost global existence for nonrelativisitic wave equations in 3D. Commun. Pure Appl. Math. 49(3), 615–666, 1996

    Article  Google Scholar 

  16. Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34(4), 481–524, 1981

    Article  ADS  MathSciNet  Google Scholar 

  17. Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77(9), 585–627, 1998

    Article  MathSciNet  Google Scholar 

  18. Lei, Z.: Global well-posedness of incompressible elastodynamics in two dimensions. Commun. Pure Appl. Math. 69(11), 2072–2106, 2016

    Article  MathSciNet  Google Scholar 

  19. Lin, F., Liu, C., Zhang, P.: On hydrodynamics of viscoelastic fluids. Commun. Pure Appl. Math. 58(11), 1437–1471, 2005

    Article  MathSciNet  Google Scholar 

  20. Lin, F., Zhang, P.: On the initial boundary value problem of the incompressible viscoelastic fluid system. Commun. Pure Appl. Math. 61(4), 539–558, 2008

    Article  MathSciNet  Google Scholar 

  21. Lei, Z., Liu, C., Zhou, Y.: Global solutions for incompressible viscoelastic fluids. Arch. Ration. Mech. Anal. 188(3), 371–398, 2008

    Article  MathSciNet  Google Scholar 

  22. Lei, Z., Sideris, T.C., Zhou, Y.: Almost global existence for 2D incompressible isotropic elastodynamics. Trans. Am. Math. Soc. 367(11), 8175–8197, 2015

    Article  Google Scholar 

  23. Lei, Z., Wang, F.: Uniform bound of the highest energy for the three dimensional incompressible elastodynamics. Arch. Ration. Mech. Anal. 216(2), 593–622, 2015

    Article  MathSciNet  Google Scholar 

  24. Qian, J., Zhang, Z.: Global well-posedness for compressible viscoelastic fluids near equilibrium. Arch. Ration. Mech. Anal. 198(3), 835–868, 2010

    Article  MathSciNet  Google Scholar 

  25. Schochet, S.: The incompressible limit in nonlinear elasticity. Commun. Math. Phys. 102(2), 207–215, 1985

    Article  ADS  MathSciNet  Google Scholar 

  26. Sideris, T.C.: The null condition and global existence if nonlinear elastic waves. Invent. Math. 123(2), 323–342, 1996

    Article  ADS  MathSciNet  Google Scholar 

  27. Sideris, T.C.: Nonresonance and global existence of prestressed nonlinear elastic waves. Ann. Math. 151(2), 849–874, 2000

    Article  MathSciNet  Google Scholar 

  28. Sideris, T.C., Thomases, B.: Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit. Commun. Pure Appl. Math. 58(6), 750–788, 2005

    Article  MathSciNet  Google Scholar 

  29. Sideris, T.C., Thomases, B.: Local energy decay for solutions of multi-dimensional isotropic symmetirc hyperbolic systems. J. Hyperbolic Differ. Equ. 3(4), 673–690, 2006

    Article  MathSciNet  Google Scholar 

  30. Sideris, T.C., Thomases, B.: Global existence for three dimensional incompressible isotropic elastodynamics. Commun. Pure Appl. Math. 60(12), 1707–1730, 2007

    Article  MathSciNet  Google Scholar 

  31. Tahvildar-Zadeh, A.S.: Relativistic and nonrelativistic elastodynamics with small shear strains. Ann. Inst. H. Poincar’e Phys. Th’eor. 69(3), 275–307, 1998

    MathSciNet  MATH  Google Scholar 

  32. Wang, X.: Global existence for the 2D incompressible isotropic elastodynamics for small initial data. Ann. Henri. Poincar’e 18(4), 1213–1267, 2017

    Article  ADS  MathSciNet  Google Scholar 

  33. Zheng, S.: Nonlinear Evolution Equations, Pitman Series Monographs and Survey in Pure and Applied Mathematics, vol. 133. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

Download references

Acknowledgements

The work was partially supported by grants from the Research Grants Council (Project No. CityU 11300417, 11301919 and 11300420) and an internal CityU fund 7005031. The authors would like to thank the anonymous referees for suggestions which improve the quality of redaction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianpeng Hu.

Additional information

Communicated by N. Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Local Energy Estimates

Appendix: Local Energy Estimates

Let \(\mathcal {V}\) and \(\mathcal {W}\) be finite-dimensional inner product space over \(\mathbb {R}\). Let \(u:[0,T)\times \mathbb {R}^n\rightarrow \mathcal {V}\) be the solution to the systems

$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _t u+\mathcal {A}(\nabla )u-\mu \Delta u-\lambda \nabla (\nabla \cdot u)=f,\\ \mathcal {B}(\nabla ) u=g. \end{array}\right. } \end{aligned}$$
(6.1)

Here,

$$\begin{aligned} \mathcal {A}(\nabla )= & {} \mathcal {A}_k\nabla _k, \quad \mathcal {A}_k\in \mathcal {L}(\mathcal {V},\mathcal {V}),\\ \mathcal {B}(\nabla )= & {} \mathcal {B}_k\nabla _k, \quad \mathcal {B}_k\in \mathcal {L}(\mathcal {V},\mathcal {W}), \end{aligned}$$

where \(\mathcal {A}_k\) and \(\mathcal {B}_k\) are constant matrices.

For the above systems (6.1), we make the following assumptions:

(1) \(\mathcal {A}(\nabla )\) is symmetric, which means that

$$\begin{aligned} \mathcal {A}^k=(\mathcal {A}^k)^T, \quad \mathrm {for}\ 1\leqq k\leqq n. \end{aligned}$$
(6.2)

(2)

$$\begin{aligned} \mathrm {ker}\mathcal {A}(\xi )\cap \mathrm {ker}\mathcal {B}(\xi )=\{0\},\quad \forall \ 0\ne \xi \in \mathbb {R}^n. \end{aligned}$$
(6.3)

(3) There exist smooth maps such that

$$\begin{aligned} V:\mathcal {SO}(\mathbb {R}^n)\rightarrow \mathcal {SO}(\mathcal {V}), \quad \mathrm {and}\quad W:\mathcal {SO}(\mathbb {R}^n)\rightarrow \mathcal {L}(\mathcal {W},\mathcal {W}), \end{aligned}$$

such that, for every \(\xi \in \mathbb {R}^n\) and \(R\in \mathcal {SO}(\mathbb {R}^n)\), we have

$$\begin{aligned} A(R\xi )=V(R)A(\xi )V(R)^* \end{aligned}$$
(6.4)

and

$$\begin{aligned} B(R\xi )=W(R)B(\xi )V(R)^*. \end{aligned}$$
(6.5)

Lemma 6.1

Let \(n\geqq 2\). Suppose the conditions (6.2) and (6.3) hold. All sufficiently regular solutions of (6.1) satisfy the estimate

$$\begin{aligned}&\Vert t\mathcal {A}(\nabla )u-r\partial _r u\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}^2 +\mu t\Vert \nabla u\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}^2+\lambda t \Vert \nabla \cdot u\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}^2\\&\qquad +(2\mu \lambda +\lambda ^2)t^2\Vert \nabla (\nabla \cdot u)\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}^2+\mu ^2t^2\Vert \Delta u\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}^2\\&\quad \lesssim \Vert Su -tf\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}^2. \end{aligned}$$

Proof

We follow the arguments in [8, 29]. According to the definition of S and the first equation in (6.1), we have

$$\begin{aligned} t\mathcal {A}(\nabla )u-r\partial _r u-\mu t\Delta u-\lambda t\nabla (\nabla \cdot u)= tf-S u. \end{aligned}$$

Taking the \(L^2\) norm on both sides of the equation above, one obtains

$$\begin{aligned}&\Vert t \mathcal {A}(\nabla )u- r\partial _r u\Vert _{L^2(\mathbb {R}^n,\mathcal {V})}^2+2\big \langle r\partial _r u-t\mathcal {A}(\nabla ) u, \mu t \Delta u+\lambda t \nabla (\nabla \cdot u)\big \rangle _{L^2(\mathbb {R}^n,\mathcal {V})}\nonumber \\&\qquad +2\mu \lambda t^2\langle \Delta u, \nabla (\nabla \cdot u)\rangle _{L^2(\mathbb {R}^n,\mathcal {V})} +\mu ^2t^2\Vert \Delta u\Vert _{L^2(\mathbb {R}^n,\mathcal {V})}^2+\lambda ^2 t^2\Vert \nabla (\nabla \cdot u)\Vert _{L^2(\mathbb {R}^n,\mathcal {V})}^2\nonumber \\&\quad \lesssim \Vert Su-tf\Vert _{L^2(\mathbb {R}^n,\mathcal {V})}^2. \end{aligned}$$
(6.6)

Due to the symmetry of the coefficient matrices, by integration by parts, we have

$$\begin{aligned} \langle \mathcal {A}(\nabla ) u, \Delta u\rangle _{L^2(\mathbb {R}^n, \mathcal {V})}=\langle A_k\nabla _k u, \Delta u\rangle _{L^2(\mathbb {R}^n, \mathcal {V})}=0. \end{aligned}$$

Similarly, we also derive

$$\begin{aligned} \langle \mathcal {A}(\nabla )u, \nabla (\nabla \cdot u)\rangle _{L^2(\mathbb {R}^n, \mathcal {V})}&=\langle A_k \nabla _k u, \nabla (\nabla \cdot u)\rangle _{L^2(\mathbb {R}^n, \mathcal {V})} =0. \end{aligned}$$

Moreover we have

$$\begin{aligned}&2\langle r\partial _r u, \mu t\Delta u\rangle _{L^2(\mathbb {R}^n, \mathcal {V})}\\&\quad =2\mu t\langle x_j \nabla _j u, \Delta u\rangle _{L^2(\mathbb {R}^n, \mathcal {V})}\\&\quad =-2\mu t\langle x_j \nabla _j \nabla _k u, \nabla _k u\rangle _{L^2(\mathbb {R}^n, \mathcal {V})} -2\mu t\langle \nabla _k u, \nabla _k u\rangle _{L^2(\mathbb {R}^n, \mathcal {V})}\\&\quad =3\mu t\langle \nabla _k u, \nabla _k u\rangle _{L^2(\mathbb {R}^n, \mathcal {V})}-2\mu t \langle \nabla _k u, \nabla _k u\rangle _{L^2(\mathbb {R}^n, \mathcal {V})}\\&\quad =\mu t\Vert \nabla u\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}^2 \end{aligned}$$

and

$$\begin{aligned}&2\langle r\partial _r u, \lambda t\nabla (\nabla \cdot u)\rangle _{L^2(\mathbb {R}^n, \mathcal {V})} \\&\quad = 2\lambda t\langle x_k\nabla _k u_i, \partial _i \nabla _j u_j \rangle _{L^2(\mathbb {R}^n, \mathcal {V})}\\&\quad =-2\lambda t\langle x_k \nabla _k \nabla _i u_i, \nabla _j u_j\rangle _{L^2(\mathbb {R}^n, \mathcal {V})} -2\lambda t\Vert \nabla \cdot u\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}^2\\&\quad =\lambda t\Vert \nabla \cdot u\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}^2. \end{aligned}$$

For the third term on the left hand side of (6.6), we have

$$\begin{aligned} 2\mu \lambda t^2 \langle \Delta u, \nabla (\nabla \cdot u)\rangle _{L^2(\mathbb {R}^n, \mathcal {V})}&=-2\mu \lambda t^2\langle \Delta \nabla \cdot u, \nabla \cdot u\rangle _{L^2(\mathbb {R}^n, \mathcal {V})}\\&=2\mu \lambda t^2\Vert \nabla (\nabla \cdot u)\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}^2. \end{aligned}$$

Combining all the above calculations, we arrive at the lemma. \(\square \)

Lemma 6.2

Let \(n\geqq 2\). Assume the conditions (6.2) and (6.3) hold. Then there exist positive constants \(\alpha \) and C depend on the coefficent of \(\mathcal {A}_k\) and \(\mathcal {B}_k\) such that

$$\begin{aligned}&\alpha t\Vert \nabla u\Vert _{L^2(\{r\leqq \alpha t\},\mathcal {V})}+ (\mu t)^\frac{1}{2}\Vert \nabla u\Vert _{L^2(\mathbb {R}^n, \mathcal {V})} +(\lambda t)^\frac{1}{2}\Vert \nabla \cdot u\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}\\&\qquad +\mu t\Vert \Delta u\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}+(2\mu \lambda +\lambda ^2)^\frac{1}{2} t\Vert \nabla (\nabla \cdot u)\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}\\&\quad \lesssim C\Vert u\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}+\Vert Su\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}+t\Vert f\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}+t\Vert g\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}. \end{aligned}$$

In addition, if the conditions (6.4) and (6.5) hold, then

$$\begin{aligned}&\Vert \langle \lambda _i t-r\rangle P_i \nabla u\Vert _{L^2(\{r\geqq \alpha t\}; \mathcal {V})}\nonumber \\&\quad \leqq C\Big [\Vert {{\tilde{\Omega }}} u\Vert _{L^2(\mathbb {R}^n; \mathcal {V})}+\Vert u\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}+\Vert Su\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}+t\Vert f\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}\Big ] \end{aligned}$$
(6.7)

and

$$\begin{aligned} \Vert r\mathcal {B}(\omega ) \nabla u\Vert _{L^2(\{r\geqq \alpha t\}; \mathcal {V})}\leqq C\Big [\Vert {{\tilde{\Omega }}} u\Vert _{^2}+\Vert u\Vert _{L^2}+\Vert rg\Vert _{L^2}\Big ]. \end{aligned}$$
(6.8)

Proof

Let \(n\geqq 2\), due to the condition (6.3), we know that \(|\mathcal {A}(\omega ) u|^2+|\mathcal {B}(\omega )u|^2\) vanishes if and only if \(u=0\). In other words, the map \(\mathcal {A}(\omega )^2+\mathcal {B}(\omega )^*\mathcal {B}(\omega ) \) is positive definite and symmetric. If we let

$$\begin{aligned} (3\alpha )^2=\min \{ \lambda : \lambda \in \sigma (\mathcal {A}(\omega )^2+\mathcal {B}(\omega )^*\mathcal {B}(\omega )),\ \mathrm {for \ some} \ \omega \in S^{n-1} \}, \end{aligned}$$

then we have

$$\begin{aligned} (3\alpha )^2|u|^2_{\mathcal {V}}\leqq |\mathcal {A}(\omega ) u|^2_{\mathcal {V}}+|\mathcal {B}(\omega ) u|^2_{\mathcal {W}} \end{aligned}$$

for all \(u\in \mathcal {V}\) and \(\omega \in S^{n-1}\). Hence, by the Fourier transform, one obtains

$$\begin{aligned} 3\alpha \Vert \nabla u\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}\leqq \Vert \mathcal {A}(\nabla ) u\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}+\Vert \mathcal {B}(\nabla )u\Vert _{L^2(\mathbb {R}^n, \mathcal {W})}. \end{aligned}$$
(6.9)

We introduce the cut-off function \(\xi \in C^\infty (\mathbb {R})\) with \(0\leqq \xi \leqq 1\) and

$$\begin{aligned} \xi (s)={\left\{ \begin{array}{ll} 1, \quad \mathrm {if}\ s\leqq 1\\ 0, \quad \mathrm {if}\ s\geqq 2 \end{array}\right. } \end{aligned}$$

Let \(\xi _\alpha =\xi (r/(\alpha t)),\) then \(\xi _\alpha u\) is supported in \(\{ r\leqq 2\alpha t\}\). By (6.9), it holds

$$\begin{aligned} 3\alpha t \Vert \nabla (\xi _\alpha u)\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}\leqq&t\Vert \mathcal {A}(\nabla ) (\xi _\alpha u)\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}+t\Vert \mathcal {B}(\nabla ) (\xi _\alpha u)\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}\\ \leqq&\Vert (t \mathcal {A}(\nabla )-r\partial _r )(\xi _\alpha u)\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}+2\alpha t\Vert \nabla (\xi _\alpha u)\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}\\&+t\Vert \mathcal {B}(\nabla ) (\xi _\alpha u)\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}, \end{aligned}$$

which means that

$$\begin{aligned} \alpha t\Vert \nabla (\xi _\alpha u)\Vert _{L^2(\mathbb {R}^n,\mathcal {V})}\leqq \Vert (t\mathcal {A}(\nabla )-r\partial _r) (\xi _\alpha u)\Vert _{L^2(\mathbb {R}^n,\mathcal {V})}+t\Vert \mathcal {B}(\nabla ) (\xi _\alpha u)\Vert _{L^2(\mathbb {R}^n,\mathcal {V})}. \end{aligned}$$

Since \((\alpha t+r)|\partial _j \xi _\alpha |\leqq C\), then we have

$$\begin{aligned}&\alpha t\Vert \nabla _j u\Vert _{L^2(\{r\leqq \alpha t\},\mathcal {V})}\\&\quad \leqq \alpha t\Vert \xi _\alpha \nabla _j u\Vert _{L^2(\mathbb {R}^n, \mathcal {V})}\\&\quad \leqq \alpha t\Vert \nabla _j (\xi _\alpha u)\Vert _{L^2(\mathbb {R}^n,\mathcal {V})} +C\Vert u\Vert _{L^2(\mathbb {R}^n,\mathcal {V})}\\&\quad \leqq \Vert (t\mathcal {A}(\nabla )-r\partial _r)(\xi _\alpha u)\Vert _{L^2(\mathbb {R}^n,\mathcal {V})}+t\Vert \mathcal {B}(\nabla ) (\xi _\alpha u)\Vert _{L^2(\mathbb {R}^n,\mathcal {V})}+C\Vert u\Vert _{L^2(\mathbb {R}^n,\mathcal {V})}\\&\quad \leqq \Vert (t\mathcal {A}(\nabla )-r\partial _r)u\Vert _{L^2(\mathbb {R}^n,\mathcal {V})}+t\Vert \mathcal {B}(\nabla ) u\Vert _{L^2(\mathbb {R}^n,\mathcal {V})}+C\Vert u\Vert _{L^2(\mathbb {R}^n,\mathcal {V})} \end{aligned}$$

and

$$\begin{aligned}&|(\lambda _i t-r)P_i(\omega )\nabla _j u(t,x)|_{\mathcal {V}}\\&\quad =|P_i(\omega )(tA(\omega )-rI)\nabla _j u(t,x)|_{ \mathcal {V}}\\&\quad \leqq |(tA(\omega )-rI)\nabla _j u(t,x)|_{ \mathcal {V}}\\&\quad \leqq |(tA_k-r\omega _kI)\omega _k\nabla _j u(t,x)|_{\mathcal {V}}\\&\quad \leqq |(tA_k-r\omega _k I)(\omega _j\nabla _k+r^{-1}\Omega _{kj})u(t,x)|_{\mathcal {V}}\\&\quad \leqq |\omega _j(tA(\nabla )-r\partial _r)u+r^{-1}(tA_k-r\omega _k I)\Omega _{kj}u|_{\mathcal {V}}\\&\quad \leqq |(t\mathcal {A}(\nabla )-r\partial _r)u(t,x)|_\mathcal {V}+C|tr^{-1}+1||\Omega u(t,x)|_{\mathcal {V}}. \end{aligned}$$

which yields (6.7) by an integration over \(\{r\geqq \alpha t\}\).

The inequality (6.8) can be justified in a similar fashion, and the proof of the lemma is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Hu, X. Incompressible Limit of Three Dimensional Compressible Viscoelastic Systems with Vanishing Shear Viscosity. Arch Rational Mech Anal 245, 753–807 (2022). https://doi.org/10.1007/s00205-022-01795-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-022-01795-z

Navigation