Skip to main content
Log in

Global \({L}_{p}\) Estimates for Kinetic Kolmogorov–Fokker–Planck Equations in Nondivergence Form

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the degenerate Kolmogorov equations (also known as kinetic Fokker–Planck equations) in nondivergence form. The leading coefficients \(a^{ij}\) are merely measurable in t and satisfy the vanishing mean oscillation condition in xv with respect to some quasi-metric. We also assume the boundedness and uniform nondegeneracy of \(a^{ij}\) with respect to v. We prove global a priori estimates in weighted mixed-norm Lebesgue spaces and solvability results. We also show an application of the main result to the Landau equation. Our proof does not rely on any kernel estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abedin, F., Tralli, G.: Harnack inequality for a class of Kolmogorov–Fokker–Planck equations in non-divergence form. Arch. Ration. Mech. Anal. 233(2), 867–900, 2019

    Article  MathSciNet  Google Scholar 

  2. Anceschi, F., Muzzioli, S., Polidoro, S.: Existence of a fundamental solution of partial differential equations associated to Asian options. Nonlinear Anal. Real World Appl. 62, 10337, 2021

    Article  MathSciNet  Google Scholar 

  3. Aimar, H., Macías, R.A.: Weighted norm inequalities for the Hardy–Littlewood maximal operator on the spaces of homogeneous type. Proc. Am. Math. Soc. 91(2), 213–216, 1984

    Article  MathSciNet  Google Scholar 

  4. Anceschi, F., Polidoro, S.: A survey on the classical theory for Kolmogorov equation. Matematiche (Catania) 75(1), 221–258, 2020

    MathSciNet  MATH  Google Scholar 

  5. Bedrossian, J., Wang, F.: The linearized Vlasov and Vlasov–Fokker–Planck equations in a uniform magnetic field. J. Stat. Phys. 178(2), 552–594, 2020

    Article  MathSciNet  ADS  Google Scholar 

  6. Benedek, A., Panzone, R.: The space \(L_p\), with mixed norm. Duke Math. J. 28, 301–324, 1961

    Article  MathSciNet  Google Scholar 

  7. Bramanti, M., Brandolini, L.: \(L^p\) estimates for uniformly hypoelliptic operators with discontinuous coefficients on homogeneous groups. Rend. Sem. Mat. Univ. Politec. Torino 58(4), 389–433, 2000

    MathSciNet  MATH  Google Scholar 

  8. Bramanti, M., Cerutti, M.C., Manfredini, M.: \(L^p\) estimates for some ultraparabolic operators with discontinuous coefficients. J. Math. Anal. Appl. 200(2), 332–354, 1996

    Article  MathSciNet  Google Scholar 

  9. Bramanti, M., Cupini, G., Lanconelli, E., Priola, E.: Global \(L^p\) estimates for degenerate Ornstein–Uhlenbeck operators. Math. Z. 266(4), 789–816, 2010

    Article  MathSciNet  Google Scholar 

  10. Bramanti, M., Cupini, G., Lanconelli, E., Priola, E.: Global \(L^p\) estimates for degenerate Ornstein–Uhlenbeck operators with variable coefficients. Math. Nachr. 286(11–12), 1087–1101, 2013

    Article  MathSciNet  Google Scholar 

  11. Chen, Z.-Q., Zhang, X.: \(L^p\)-maximal hypoelliptic regularity of nonlocal kinetic Fokker–Planck operators. J. Math. Pures Appl. (9) 116, 52–87, 2018

    Article  MathSciNet  Google Scholar 

  12. Chen, Z.-Q., Zhang, X.: Propagation of regularity in \(L^p\)-spaces for Kolmogorov-type hypoelliptic operators. J. Evol. Equ. 19(4), 1041–1069, 2019

    Article  MathSciNet  Google Scholar 

  13. Di Francesco, M., Pascucci, A.: On a class of degenerate parabolic equations of Kolmogorov type. AMRX Appl. Math. Res. Express 3, 77–116, 2005

    Article  MathSciNet  Google Scholar 

  14. Dong, H., Guo, Y., Yastrzhembskiy, T.: Kinetic Fokker–Planck and Landau Equations with Specular Reflection Boundary Condition. Kinetic and Related Models 15(3), 467–516, 2022. https://doi.org/10.3934/krm.2022003.

    Article  MathSciNet  Google Scholar 

  15. Dong, H., Kim, D.: On \(L_p\)-estimates for elliptic and parabolic equations with \(A_p\) weights. Trans. Am. Math. Soc. 370(7), 5081–5130, 2018

    Article  Google Scholar 

  16. Dong, H., Guo, Y., Ouyang, Z.: The Vlasov–Poisson–Landau System with the Specular-Reflection Boundary Condition, arXiv:2010.05314

  17. Dong, H., Krylov, N. V.: Fully nonlinear elliptic and parabolic equations in weighted and mixed-norm Sobolev spaces. Calc. Var. Partial Differ. Equ. 58, no. 4, Paper No. 145, 2019

  18. Golse, F., Imbert, C., Mouhot, C., Vasseur, A.F.: Harnack inequality for kinetic Fokker–Planck equations with rough coefficients and application to the Landau equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19(1), 253–295, 2019

    MathSciNet  MATH  Google Scholar 

  19. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249, 3rd edn. Springer, New York (2014)

  20. Hao, Z., Zhang, X., Zhu, R., Zhu, X.: Singular kinetic equations and applications, arXiv:2108.05042

  21. Huang, L., Menozzi, S., Priola, E.: \(L^p\) estimates for degenerate non-local Kolmogorov operators. J. Math. Pures Appl. (9) 121, 162–215, 2019

    Article  MathSciNet  Google Scholar 

  22. Imbert, C., Mouhot, C.: The Schauder estimate in kinetic theory with application to a toy nonlinear model. Ann. H. Lebesgue 4, 369–405, 2021

    Article  MathSciNet  Google Scholar 

  23. Imbert, C., Silvestre, L.: The Schauder estimate for kinetic integral equations. Anal. PDE 14(1), 171–204, 2021

    Article  MathSciNet  Google Scholar 

  24. Kim, J., Guo, Y.: Hyung Ju Hwang, An \(L^2\) to \(L^{\infty }\) framework for the Landau equation. Peking Math. J. 3(2), 131–202, 2020

    Article  MathSciNet  Google Scholar 

  25. Krylov, N.V., Röckner, M.: Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Relat. Fields 131(2), 154–196, 2005

    Article  MathSciNet  Google Scholar 

  26. Krylov, N.V.: Parabolic and elliptic equations with VMO coefficients. Commun. Partial Differ. Equ. 32(1–3), 453–475, 2007

    Article  MathSciNet  Google Scholar 

  27. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. Graduate Studies in Mathematics, vol. 96. American Mathematical Society, Providence (2008)

  28. Krylov, N.V.: Second-order elliptic equations with variably partially VMO coefficients. J. Funct. Anal. 257(6), 1695–1712, 2009

    Article  MathSciNet  Google Scholar 

  29. Krylov, N.V.: Rubio de Francia extrapolation theorem and related topics in the theory of elliptic and parabolic equations. A survey, Algebra i Analiz 32 (2020), no. 3, 5-38; reprinted in St. Petersburg Math. J. 32 (2021), no. 3, 389–413

  30. Krylov, N. V.: On diffusion processes with drift in \(L_{d+1}\), arXiv:2102.11465

  31. Manfredini, M., Polidoro, S.: Interior regularity for weak solutions of ultraparabolic equations in divergence form with discontinuous coefficients. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1(3), 651–675, 1998

    MathSciNet  MATH  Google Scholar 

  32. Niebel, L., Zacher, R.: Kinetic maximal \(L^p\)-regularity with temporal weights and application to quasilinear kinetic diffusion equations. J. Differ. Equ. 307, 29–82, 2022

    Article  Google Scholar 

  33. Pascucci, A.: Kolmogorov equations in physics and in finance. Elliptic and parabolic problems. Prog. Nonlinear Differ. Equ. Appl. 63, 353–364, 2005

    MATH  Google Scholar 

  34. Pascucci, A., Pesce, A.: On stochastic Langevin and Fokker–Planck equations: the two-dimensional case. J. Differ. Equ. 310, 443–483, 2022

    Article  MathSciNet  ADS  Google Scholar 

  35. Polidoro, S., Ragusa, M.: Sobolev–Morrey spaces related to an ultraparabolic equation. Manuscripta Math. 96(3), 371–392, 1998

    Article  MathSciNet  Google Scholar 

  36. Röckner, M., Zhao, G.: SDEs with critical time dependent drifts: strong solutions, arXiv:2103.05803

  37. Stinga, P.R.: User’s guide to the fractional Laplacian and the method of semigroups. In: Kochubei, A., Luchko Y. (eds.): Handbook of Fractional Calculus with Applications, vol. 2, pp. 235–265. De Gruyter, Berlin, 2019

  38. Song, R., Xie, L.: Well-posedness and long time behavior of singular Langevin stochastic differential equations. Stoch. Process. Appl. 130(4), 1879–1896, 2020

    Article  MathSciNet  Google Scholar 

  39. Zhang, X.: Stochastic Hamiltonian flows with singular coefficients. Sci. China Math. 61(8), 1353–1384, 2018

    Article  MathSciNet  Google Scholar 

  40. Zhang, X., Zhang, X.: Cauchy Problem of Stochastic Kinetic Equations, arXiv:2103.02267

Download references

Acknowledgements

The authors would like to thank the referees for finding a typo in the original version of the manuscript, pointing out the references [2] and [13], and providing suggestions that have led to the improvement of this paper’s presentation. We also express our sincere gratitude to the referee who suggested to study the a priori estimate in the \(S_p\) space with the weight depending on the x variable. H. Dong was partially supported by the Simons Foundation, Grant No. 709545, a Simons fellowship, Grant No. 007638, and the NSF under agreement DMS-2055244.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timur Yastrzhembskiy.

Additional information

Communicated by C. Mouhot.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Lemma A.1

Let \(\sigma > 0\), \(R > 0\), \(p \geqq 1\) be numbers, and \(f \in L_{p, \text {loc} } ({\mathbb {R}}^d)\). Denote

$$\begin{aligned} g ( x) = \int _{|y| > R^3 } f ( x+y) |y|^{- (d + \sigma )} \, \mathrm{d}y. \end{aligned}$$

Then,

$$\begin{aligned} (|g|^p)^{1/p}_{ B_{R^3 } }\leqq N (d , \sigma ) R^{- 3 \sigma } \sum _{k = 0}^{\infty } 2^{- 3 k\sigma } (|f|^p)^{1/p}_{ B_{ (2^kR)^3 } }. \end{aligned}$$

Proof

By Hölder’s inequality for any \(x \in B_{R^3 }\), we have

Taking the \(L_p\)-average of the both sides of the last inequality over \(B_{R^3}\) and using the Minkowski inequality, we prove the assertion of this lemma. \(\quad \square \)

Lemma A.2

Let \(p > 1\) be a number, \(w \in A_p ({\mathbb {R}}^d)\), and \(f \in L_p ({\mathbb {R}}^d, w)\). Then, there exists a number \(p_0 > 1\) depending only on d, p, and \([w]_{A_p}\) such that \(f \in L_{p_0, \text {loc}} ({\mathbb {R}}^d).\)

Proof

By Corollary 7.2.6 of [19], there exists \(q \in (1, p)\) depending only on p, d, and \([w]_{A_p ({\mathbb {R}}^d)}\) such that \( w \in A_{q} ({\mathbb {R}}^d). \) Let \(p_0 = p/q\). Then, by this and Hölder’s inequality for any cube C,

$$\begin{aligned} \int _C |f|^{p_0} \, \mathrm{d}x \leqq \Big (\int _C |f|^p w \, \mathrm{d}x\Big )^{1/q} \Big (\int _C w^{-1/(q-1)} \, \mathrm{d}x\Big )^{(q-1)/q} < \infty . \end{aligned}$$

The lemma is proved. \(\quad \square \)

For numbers \(p_1, \ldots , p_d \in (1, \infty )\), by \(L_{p_1, \ldots , p_d} (w_1, \ldots , w_d)\) we denote the space of measurable functions with the finite norm

$$\begin{aligned}&\Vert f\Vert _{ L_{p_1, \ldots , p_d } (w_1, \ldots , w_d) } \\&\quad = \big |\int _{{\mathbb {R}}} \big | \ldots \big |\int _{{\mathbb {R}}} \big |\int _{{\mathbb {R}}} |f|^{p_1} (x) \, w_1 (x_1) \mathrm{d}x_1\big |^{\frac{p_2}{p_1} } \ldots w_d (x_d) \mathrm{d}x_d\big |^{\frac{1}{p_d}}. \end{aligned}$$

Furthermore, by \(W^2_{p_1, \ldots , p_d} (w_1, \ldots , w_d)\) we mean the Sobolev space of all functions \(u \in L_{p_1, \ldots , p_d} (w_1, \ldots , w_d)\) such that \(D_x u, D^2_x u \in L_{p_1, \ldots , p_d} (w_1, \ldots , w_d)\).

Lemma A.3

(Interpolation inequality) Let \(p_1, \ldots , p_d \in (1, \infty )\) be arbitrary numbers and \(w_i \in A_{p_i} ({\mathbb {R}}), i = 1, \ldots , d\), such that \([w_i]_{ A_{p_{i}} ({\mathbb {R}}) } \leqq K, i = 1, \ldots , d,\) for some \(K \geqq 1\). Then, for any \(u \in W^2_{p_1, \ldots , p_d} (w_1, \ldots , w_d)\) and \(\varepsilon > 0\), we have

$$\begin{aligned} \Vert D_x u\Vert \leqq \varepsilon \Vert D^2_x u\Vert + N \varepsilon ^{-1} \Vert u\Vert , \end{aligned}$$

where \( \Vert \cdot \Vert = \Vert \cdot \Vert _{ L_{p_1, \ldots , p_d } (w_1, \ldots , w_d) } \) and \( N = N (d, p_1, \ldots , p_d, K). \)

Proof

First, by Lemma 3.8 (iii) of [17], for any \(w \in A_{p_1} ({\mathbb {R}}^d)\) and \(\varepsilon >0\), one has

$$\begin{aligned} \int |D_x u|^{p_1} w (x) \, \mathrm{d}x \leqq N \int |g|^{p_1} w (x) \, \mathrm{d}x, \end{aligned}$$

where

$$\begin{aligned} g (x) = \varepsilon |D^2_x u| + \varepsilon ^{-1} |u| \end{aligned}$$

and \(N = N (d, p_1, [w]_{A_{p_1} ({\mathbb {R}}^d) })\). Applying a variant of the Rubio de Francia extrapolation theorem (see, for example, Theorem 7.11 of [17] and also [29]), we prove the lemma. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Yastrzhembskiy, T. Global \({L}_{p}\) Estimates for Kinetic Kolmogorov–Fokker–Planck Equations in Nondivergence Form. Arch Rational Mech Anal 245, 501–564 (2022). https://doi.org/10.1007/s00205-022-01786-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-022-01786-0

Navigation