Skip to main content
Log in

Burst of Point Vortices and Non-uniqueness of 2D Euler Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

A Correction to this article was published on 29 August 2022

This article has been updated

Abstract

We give a rigorous construction of solutions to the Euler point vortices system in which three vortices burst out of a single one in a configuration of many vortices; equivalently we show that there exist configurations of arbitrarily many vortices in which three of them collapse in finite time. As an intermediate step, we show that well-known self-similar bursts and collapses of three isolated vortices in the plane persist under a sufficiently regular external perturbation. We also discuss how our results produce examples of non-unique weak solutions to 2-dimensional Euler’s equations—in the sense introduced by Schochet—in which energy is dissipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

Notes

  1. It is a classical result that 2D Euler’s equations are well posed for \(L^\infty \) initial data, [23].

  2. We thus have listed four first integrals, I, H and the two components of C, but they are not in involution: we refer again to [25] for Hamiltonian integrability when \(N=3\). We recall that already for \(N=4\) vortices the system is in general not integrable.

  3. Since we want to regard point vortices systems as curves in \(\Gamma \), the choice of weak* topology is somewhat forced: continuous curves \(t\mapsto \mu _t\) in \(\Gamma \) endowed with the total variation norm \(\left\| \mu \right\| =\left| \mu \right| ({\mathbb {R}}^2)\) are such that \(t\mapsto \mu _t(\left\{ x\right\} )\) is continuous for every point \(x\in {\mathbb {C}}\).

References

  1. Albeverio, S., Ferrario, B.: 2D vortex motion of an incompressible ideal fluid: the Koopman–von Neumann approach. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6(2), 155–165, 2003

    Article  MathSciNet  Google Scholar 

  2. Aref, H., Boyland, P.L., Stremler, M.A., Vainchtein, D.L.: Turbulent statistical dynamics of a system of point vortices. Fundamental Problematic Issues in Turbulence (Monte Verita, 1998), Trends Math. Birkhäuser, Basel, 151–161, 1999

  3. Aref, H.: Self-similar motion of three point vortices. Phys. Fluids 22(5), 057104, 2010

    Article  ADS  MathSciNet  Google Scholar 

  4. Aref, H., Rott, N., Thomann, H.: Gröbli’s solution of the three-vortex problem. Annu. Rev. Fluid Mech. 24(1), 1–21, 1992

    Article  ADS  Google Scholar 

  5. Buttà, P., Marchioro, C.: Long time evolution of concentrated Euler flows with planar symmetry. SIAM J. Math. Anal. 50(1), 735–760, 2018

    Article  MathSciNet  Google Scholar 

  6. Caglioti, E., Lions, P.-L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143(3), 501–525, 1992

    Article  ADS  MathSciNet  Google Scholar 

  7. Caglioti, E., Lions, P.-L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. II. Commun. Math. Phys. 174(2), 229–260, 1995

    Article  ADS  MathSciNet  Google Scholar 

  8. Delarue, F., Flandoli, F., Vincenzi, D.: Noise prevents collapse of Vlasov–Poisson point charges. Commun. Pure Appl. Math. 67(10), 1700–1736, 2014

    Article  MathSciNet  Google Scholar 

  9. Delort, J.-M.: Existence de nappes de tourbillon en dimension deux. J. Am. Math. Soc. 4(3), 553–586, 1991

    Article  MathSciNet  Google Scholar 

  10. Dürr, D., Pulvirenti, M.: On the vortex flow in bounded domains. Commun. Math. Phys. 85(2), 265–273, 1982

    Article  ADS  MathSciNet  Google Scholar 

  11. Flandoli, F., Gubinelli, M., Priola, E.: Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations. Stoch. Process. Appl. 121(7), 1445–1463, 2011

    Article  MathSciNet  Google Scholar 

  12. Flandoli, F.: Weak vorticity formulation of 2D Euler equations with white noise initial condition. Commun. Partial Differ. Equ. 43(7), 1102–1149, 2018

    Article  MathSciNet  Google Scholar 

  13. Gebhard, B.: Periodic solutions for the \(N\)-vortex problem via a superposition principle. Discrete Contin. Dyn. Syst. 38(11), 5443–5460, 2018

    Article  MathSciNet  Google Scholar 

  14. Gebhard, B., Ortega, R.: Stability of periodic solutions of the \(N\)-vortex problem in general domains. Regul. Chaotic Dyn. 24(6), 649–670, 2019

    Article  ADS  MathSciNet  Google Scholar 

  15. Gotoda, T., Sakajo, T.: Distributional enstrophy dissipation via the collapse of three point vortices. J. Nonlinear Sci. 26(5), 1525–1570, 2016

    Article  ADS  MathSciNet  Google Scholar 

  16. Gotoda, T., Sakajo, T.: Universality of the anomalous enstrophy dissipation at the collapse of three point vortices on Euler–Poincaré models. SIAM J. Appl. Math. 78(4), 2105–2128, 2018

    Article  MathSciNet  Google Scholar 

  17. Grotto, F.: Essential self-adjointness of Liouville operator for 2D Euler point vortices. J. Funct. Anal. 279(6), 108635, 2020

    Article  MathSciNet  Google Scholar 

  18. Grotto, F.: Stationary solutions of damped stochastic 2-dimensional Euler’s equation. Electron. J. Probab. 25, 24, 2020

    Article  MathSciNet  Google Scholar 

  19. Grotto, F., Peccati, G.: Infinitesimal invariance of completely random measures for 2d Euler equations. Theory Probab. Math. Stat., 2021 (to appear)

  20. Grotto, F., Romito, M.: A central limit theorem for Gibbsian invariant measures of 2D Euler equations. Commun. Math. Phys. 376(3), 2197–2228, 2020

    Article  ADS  MathSciNet  Google Scholar 

  21. Helmholtz, H.: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. Journal für die Reine und Angewandte Mathematik [Crelle’s Journal] 55, 25–55, 1858

    MathSciNet  Google Scholar 

  22. Iftimie, D., Marchioro, C.: Self-similar point vortices and confinement of vorticity. Commun. Partial Differ. Equ. 43(3), 347–363, 2018

    Article  MathSciNet  Google Scholar 

  23. Judovič, V.I.: Non-stationary flows of an ideal incompressible fluid. Ž. Vyčisl. Mat i Mat. Fiz. 3, 1032–1066, 1963

    MathSciNet  Google Scholar 

  24. Khanin, K.M.: Quasiperiodic motions of vortex systems. Phys. D 4(2), 261–269, 1981/82 (With an appendix by S. L. Ziglin)

  25. Krishnamurthy, V.S., Stremler, M.A.: Finite-time collapse of three point vortices in the plane. Regul. Chaotic Dyn. 23(5), 530–550, 2018

    Article  ADS  MathSciNet  Google Scholar 

  26. Leoncini, X., Barrat, A., Josserand, C., Villain-Guillot, S.: Offsprings of a point vortex. Eur. Phys. J. B 82(2), 173–178, 2011

    Article  ADS  Google Scholar 

  27. Long, Y., Wang, Y., Zeng, C.: Concentrated steady vorticities of the Euler equation on 2-d domains and their linear stability. J. Differ. Equ. 266(10), 6661–6701, 2019

    Article  ADS  MathSciNet  Google Scholar 

  28. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow, volume 27 of Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  29. Marchioro, C., Pulvirenti, M.: Euler evolution for singular initial data and vortex theory. Commun. Math. Phys. 91(4), 563–572, 1983

    Article  ADS  MathSciNet  Google Scholar 

  30. Marchioro, C.: Euler evolution for singular initial data and vortex theory: a global solution. Commun. Math. Phys. 116(1), 45–55, 1988

    Article  ADS  MathSciNet  Google Scholar 

  31. Marchioro, C.: On the inviscid limit for a fluid with a concentrated vorticity. Commun. Math. Phys. 196(1), 53–65, 1998

    Article  ADS  MathSciNet  Google Scholar 

  32. Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids, vol. 96. Applied Mathematical Sciences. Springer, New York (1994)

    MATH  Google Scholar 

  33. Meleshko, V.V., Aref, H.: A bibliography of vortex dynamics 1858–1956. Adv. Appl. Mech. 41(197), 197–292, 2007

    Google Scholar 

  34. Newton, P.K.: \(N\)-vortex equilibrium theory. Discrete Contin. Dyn. Syst. Ser. A 19(2), 411–418, 2007

    Article  MathSciNet  Google Scholar 

  35. Newton, P.K.: The \(N\)-vortex problem, volume 145 of Applied Mathematical Sciences. Springer, New York (2001)

    Google Scholar 

  36. Newton, P.K.: Point vortex dynamics in the post-Aref era. Fluid Dyn. Res. Int. J. 46(3), 031401, 2014

    Article  ADS  MathSciNet  Google Scholar 

  37. O’Neil, K.A.: Collapse of point vortex lattices. Physica D Nonlinear Phenom. 37(1–3), 531–538, 1989

    Article  ADS  MathSciNet  Google Scholar 

  38. Sakajo, T.: Instantaneous energy and enstrophy variations in Euler-alpha point vortices via triple collapse. J. Fluid Mech. 702, 188–214, 2012

    Article  ADS  MathSciNet  Google Scholar 

  39. Schochet, S.: The weak vorticity formulation of the \(2\)-D Euler equations and concentration-cancellation. Commun. Partial Diff. Equ. 20(5–6), 1077–1104, 1995

    Article  MathSciNet  Google Scholar 

  40. Schochet, S.: The point-vortex method for periodic weak solutions of the 2-D Euler equations. Commun. Pure Appl. Math. 49(9), 911–965, 1996

    Article  MathSciNet  Google Scholar 

  41. Wang, Q.: Relative periodic solutions of the \(N\)-vortex problem via the variational method. Arch. Ration. Mech. Anal. 231(3), 1401–1425, 2019

    Article  MathSciNet  Google Scholar 

  42. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. I: Fixed-Point Theorems. Springer, New York, 1986 (Translated from the German by Peter R, Wadsack)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Grotto.

Additional information

Communicated by P. Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proofs of Technical Lemmas

Appendix A. Proofs of Technical Lemmas

1.1 Proof of Lemma 2.3

First of all, we discuss the existence of suitable parameters \(a>0\), \(b\in {\mathbb {R}}\), \(a_1,a_2,a_3\in {\mathbb {C}}\) as in the statement of the lemma. The three equations of (2.3) (for \(j=1,2,3\)) are not linearly independent, and setting for brevity \(\chi =\frac{6\pi i}{\xi }(a-ib)\), they provide two independent relations between \(a_1,a_2,a_3\):

$$\begin{aligned} \chi {{\bar{a}}}_2&=\left( \frac{2}{a_2-a_3}-\frac{1}{a_2-a_1}\right) ,\\ \chi {{\bar{a}}}_3&=\left( \frac{2}{a_3-a_2}-\frac{1}{a_3-a_1}\right) . \end{aligned}$$

We can reduce a variable by imposing that the centre of vorticity is \(0=\xi _1z_1+\xi _2z_2+\xi _3z_3\), since this implies, for our choice of intensities, that \(a_1=2(a_2+a_3)\). Simple passages then lead to an equation involving only \(a_2,a_3\):

$$\begin{aligned} |a_2|^2+|a_3|^2+4{{\,\mathrm{Re}\,}}({{\bar{a}}}_2 a_3)=0. \end{aligned}$$

Solutions \(a_2,a_3\) to this last equation are of course not unique. From now on, since our aim is only existence of a set of parameters \(a,b,a_1,a_2,a_3\) as in the statement, we can impose further conditions to reduce computations to particular, amenable cases.

Let us thus impose that \(a_3=\lambda \in {\mathbb {R}}\) is real (in fact this is without loss of generality, by rotation invariance of the system), so that if \(a_2=A+iB\) we want to solve

$$\begin{aligned} \lambda ^2+A^2+B^2+4\lambda A=0, \end{aligned}$$

and from relations above given such \(\lambda ,A,B\) one can retrieve \(a_1\) and

$$\begin{aligned} \chi =\frac{6\pi i}{\xi }(a-ib)=-\frac{3}{\lambda }\cdot \frac{A+i B+\lambda }{(A+i B-\lambda )(2A+2iB+\lambda )}. \end{aligned}$$

This last relation is important: since \(a>0\), if \(\lambda ,A,B\) can be chosen so that the imaginary part of \(\chi \) can take any value in \({\mathbb {R}}{\smallsetminus }\left\{ 0\right\} \), so will \(\xi \), as we are requiring. Elementary computations reveal that the following two sets of parameters

$$\begin{aligned} \xi >0,\,a= & {} \frac{\sqrt{3}}{84\pi }\xi ,\,b=\frac{5}{84\pi }\xi ,\, a_1=-2+i2\sqrt{3},\,a_2=-2+i\sqrt{3},\,a_3=1;\\ \xi <0,\,a= & {} -\frac{\sqrt{3}}{84\pi }\xi ,\,b=\frac{5}{84\pi }\xi ,\, a_1=2+i2\sqrt{3},\,a_2=2+i\sqrt{3},\,a_3=-1; \end{aligned}$$

satisfy the statement of the Lemma, allowing a choice of \(a,b,a_1,a_2,a_3\) for any \(\xi \in {\mathbb {R}}{\smallsetminus }\left\{ 0\right\} \).

Concerning the Hölder regularity of such a solution, for \(t>s>0\),

$$\begin{aligned} |Z(t)-Z(s)| \leqq&|Z(t) - \sqrt{2as}\,e^{i \frac{b}{2a} \log t}| + |\sqrt{2as}\,e^{i \frac{b}{2a} \log t}-Z(s)| \\ =&\sqrt{2at} - \sqrt{2as} + \sqrt{2as}\, |e^{i \frac{b}{2a} \log t}-e^{i \frac{b}{2a} \log s}| \\ \leqq&\sqrt{2a(t-s)} + \sqrt{2as}\, \frac{|b|}{2a}\left( \log t - \log s \right) \\ =&\sqrt{2a(t-s)} + \sqrt{2as}\, \frac{|b|}{2a} \int _s^t \frac{\hbox {d}r}{r} \leqq \sqrt{2a(t-s)} + \sqrt{2a}\, \frac{|b|}{2a} \int _s^t \frac{\hbox {d}r}{r^{1/2}} \\ =&\sqrt{2a(t-s)} + \sqrt{2a}\frac{|b|}{2a} \frac{\sqrt{t}-\sqrt{s}}{2} \leqq \sqrt{2 a} \left( 1+\frac{|b|}{4a}\right) \sqrt{t-s}, \end{aligned}$$

which concludes the proof.

1.2 Proof of Lemma 2.7: Expansions and Leading Orders

Let the notation established in Section 2 prevail. In order to express the rational functions of \(z_1,z_2,z_3\) in terms of the new coordinates, we will make use of elementary Taylor expansions.

Let us consider

$$\begin{aligned} Q_j(x)=\frac{1}{1-x-{a_j}/{a_1}}, \quad x \in {\mathbb {C}}, \quad j=2,3 \end{aligned}$$

for small values of |x|. Since \(a_j \ne a_1\), \(Q_j\) is holomorphic for \(|x|<\rho _j= |1-a_j/a_1|/2\), and for the latter values \(Q_j\) has a convergent power series expansion \(Q_j(x)=\sum _{n=0}^{\infty } c_{j,n} x^n\). Remainders of the series,

$$\begin{aligned} R_{j,m+1}(x) =Q_j(x) - \sum _{n=0}^{m} c_{j,n} x^n =\sum _{n=m+1}^{\infty } c_{j,n} x^n, \end{aligned}$$
(A.1)

are holomorphic functions satisfying, for \(|x|<\rho _j / 2\),

$$\begin{aligned} |R_{j,m+1}(x)| \leqq 2 \rho _j^{-m-2} |x|^{m+1},\quad |R'_{j,m+1}(x)| \leqq C_m \rho _j^{-m-2}|x|^{m}, \end{aligned}$$
(A.2)

\(C_m>0\) depending only on m. Similar estimates hold for the functions

$$\begin{aligned} Q_{j,k}(x) = \frac{1}{x+\frac{a_j}{a_1}- \frac{a_k}{a_1}}, \quad |x|<|a_j-a_k|/{4|a_1|}; \end{aligned}$$

we denote by \(R_{j,k,m}\) remainders of \(Q_{j,k}\).

The dynamics of r and \(\theta \) are the simpler ones. For the former we have

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t}(r^2) =&\frac{1}{|a_1^2|} \frac{\hbox {d}}{\hbox {d}t}(z_1 {\bar{z}}_1) =\frac{2}{|a_1^2|} \text {Re} \left( \frac{z_1}{2\pi i} \sum _{k \ne 1} \frac{\xi _k}{z_1-z_k} + z_1 f(t,z_1)\right) \\ =&\frac{2}{|a_1^2|} \text {Re} \left( \frac{1}{2\pi i} \sum _{k \ne 1} \frac{\xi _k}{1-x_k-\frac{a_k}{a_1}} \right) + \frac{2}{|a_1^2|} \text {Re} \left( z_1 f(t,z_1) \right) . \end{aligned}$$

Recalling (A.1) and making use of (2.3), we rewrite the expression above as

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t}(r^2) =&\frac{2}{|a_1^2|} \text {Re} \left( \frac{1}{2\pi i} \sum _{k \ne 1} \frac{a_1\xi _k}{a_1-a_k} + \frac{1}{2\pi i} \sum _{k \ne 1} R_{k,1}(x_k) \right) + \frac{2}{|a_1^2|} \text {Re} \left( z_1 f(t,z_1) \right) \\ =&2a + \frac{2}{|a_1^2|} \text {Re} \left( \frac{1}{2\pi i} \sum _{k \ne 1} R_{k,1}(x_k) \right) + \frac{2}{|a_1^2|} \text {Re} \left( z_1 f(t,z_1) \right) \\ =&2a + \omega _{r}(x_2,x_3) + \frac{2}{|a_1^2|} \text {Re} \left( z_1 f(t,z_1) \right) , \end{aligned}$$

where, by (A.2), there exist \(C,\rho '>\) depending only on \(\xi ,a_1,a_2,a_3\) such that

$$\begin{aligned} \forall |x_2|, |x_3| < \rho ',\quad |\omega _{r}(x_2,x_3)| \leqq C \left( |x_2| + |x_3|\right) ,\quad |\nabla \omega _{r}(x_2,x_3)| \leqq C. \end{aligned}$$

By an analogous computation,

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t}\theta&=-i \frac{\hbox {d}}{\hbox {d}t} \log \left( \frac{z_1}{a_1 r}\right) =-i\frac{r}{z_1} \frac{\hbox {d}}{\hbox {d}t}\left( \frac{z_1}{r}\right) \\&={{\,\mathrm{Im}\,}}\left( \frac{\dot{z}_1}{z_1}-\frac{\dot{r}}{r}\right) ={{\,\mathrm{Im}\,}}\left( \frac{\dot{z}_1}{z_1}\right) \\&=-{{\,\mathrm{Im}\,}}\left( \frac{1}{2\pi i {{\bar{z}}}_1} \sum _{k \ne 1} \frac{\xi _k}{z_1-z_k} \right) + {{\,\mathrm{Im}\,}}\left( \frac{\overline{f(t,z_1)}}{z_1} \right) \\&=\frac{b}{r^2} -{{\,\mathrm{Im}\,}}\left( \frac{|a_1|^2}{2\pi i r^2} \sum _{k \ne 1} R_{k,1}(x_k)\right) +{{\,\mathrm{Im}\,}}\left( \frac{\overline{f(t,z_1)}}{z_1} \right) \\&=\frac{b}{r^2} + \frac{\omega _{\theta }(x_2,x_3)}{r^2} +{{\,\mathrm{Im}\,}}\left( \frac{\overline{f(t,z_1)}}{z_1} \right) , \end{aligned}$$

where we have used the fact that \({{\,\mathrm{Re}\,}}\left( \frac{\dot{z}_1}{z_1}\right) =\frac{\dot{r}}{r}\) (which is easily verified by the definitions). Here, again by (A.2), \(\omega _{\theta }\) satisifies

$$\begin{aligned} \forall |x_2|, |x_3| < \rho ', \quad |\omega _{\theta }(x_2,x_3)| \leqq C \left( |x_2| + |x_3|\right) ,\quad |\nabla \omega _{\theta }(x_2,x_3)| \leqq C, \end{aligned}$$

possibly reducing constants \(C,\rho '>0\) depending again only on \(\xi ,a_1,a_2,a_3\).

The evolution of \(x_j\), \(j=2,3,\) requires more care. It holds that

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t} x_j&= \frac{1}{z_1^2}\left( z_1 \frac{\hbox {d}}{\hbox {d}t} z_j - z_j \frac{\hbox {d}}{\hbox {d}t} z_1\right) \\&=\frac{1}{z_1} \overline{\left( \frac{1}{2\pi i} \left( \frac{\xi _k}{z_j-z_k}+ \frac{\xi _1}{z_j-z_1} \right) + f(t,z_j)\right) }\\&\quad -\frac{z_j}{z_1^2}\overline{\left( \frac{1}{2\pi i} \sum _{\ell \ne 1} \frac{\xi _\ell }{z_1-z_\ell } + f(t,z_1)\right) }. \end{aligned}$$

Let us first study the part of vector field due to vortices interactions; we have

$$\begin{aligned} \frac{1}{2\pi i}\left( \frac{\xi _k}{z_j-z_k}+ \frac{\xi _1}{z_j-z_1}\right) =&\frac{1}{2\pi i z_1} \left( \frac{\xi _k}{x_j-x_k + \frac{a_j}{a_1}- \frac{a_k}{a_1}}+ \frac{\xi _1}{x_j+ \frac{a_j}{a_1} -1} \right) \\ =&\frac{1}{2\pi i z_1} \left( Q_{j,k}(x_j-x_k) - \frac{\xi _1}{\xi _j} Q_j(x_j)\right) . \end{aligned}$$

Therefore,

$$\begin{aligned}&\frac{1}{2\pi i}\left( \frac{\xi _k}{z_j-z_k}+ \frac{\xi _1}{z_j-z_1}\right) \\&\quad = \frac{1}{2\pi i z_1} \left( \frac{a_1 \xi _k}{a_j- a_k} -\frac{a_1^2 \xi _k}{(a_j- a_k)^2}(x_j-x_k) +R_{j,k,2}(x_j-x_k)\right. \\&\qquad \left. +\frac{a_1 \xi _1}{a_j- a_1}- \frac{a_1^2 \xi _1}{(a_j- a_1)^2}x_j -\frac{\xi _1}{\xi _j}R_{j,2}(x_k)\right) \\&\quad = \frac{1}{2\pi i z_1} \left( 2\pi i \overline{a_j}a_1(a-i b)- \frac{a_1^2 \xi _k}{(a_j- a_k)^2}(x_j-x_k)- \frac{a_1^2 \xi _1}{(a_j- a_1)^2}x_j \right. \\&\qquad \left. +R_{j,k,2}(x_j-x_k) -\frac{\xi _1}{\xi _j}R_{j,2}(x_k)\right) , \end{aligned}$$

hence

$$\begin{aligned}&\frac{1}{z_1}\overline{\frac{1}{2\pi i} \left( \frac{\xi _k}{z_j-z_k}+ \frac{\xi _1}{z_j-z_1} \right) }\\&\quad = \frac{a_j}{a_1}\frac{|a_1|^2}{|z_1|^2} (a+ib) + \frac{1}{2\pi i |z_1|^2} \overline{\left( \frac{a_1^2 \xi _k}{(a_j- a_k)^2}(x_j-x_k)+ \frac{a_1^2 \xi _1}{(a_j- a_1)^2}x_j \right) } \\&\qquad + \frac{1}{2\pi i |z_1|^2} \overline{\left( R_{j,k,2}(x_j-x_k) - \frac{\xi _1}{\xi _j}R_{j,2}(x_k) \right) }. \end{aligned}$$

We move now to the contribution given by \({\dot{z}}_1\):

$$\begin{aligned} \frac{1}{2\pi i} \sum _{\ell \ne 1} \frac{\xi _\ell }{z_1-z_\ell } =&\frac{1}{2\pi i z_1} \left( \frac{\xi _k}{1-x_k- \frac{a_k}{a_1}}+ \frac{\xi _j}{1-x_j- \frac{a_j}{a_1}} \right) \\ =&\frac{1}{2\pi i z_1} \left( \frac{a_1 \xi _j}{a_1- a_j} + \frac{a_1^2 \xi _j}{(a_1- a_j)^2}x_j + \frac{a_1 \xi _k}{a_1- a_k} + \frac{a_1^2 \xi _k}{(a_1- a_k)^2}x_k\right. \\&\quad \left. + R_{j,2}(x_j) + R_{k,2}(x_k) \right) \\ =&\frac{1}{2\pi i z_1} \left( 2 \pi i |a_1|^2 (a-ib) + \frac{a_1^2 \xi _j}{(a_1- a_j)^2}x_j + \frac{a_1^2 \xi _k}{(a_1- a_k)^2}x_k\right. \\&\quad \left. + R_{j,2}(x_j) + R_{k,2}(x_k) \right) . \end{aligned}$$

Therefore

$$\begin{aligned}&-\frac{z_j}{z_1^2} \overline{ \left( \frac{1}{2\pi i} \sum _{\ell \ne 1} \frac{\xi _\ell }{z_1-z_\ell } \right) } \\&\quad = -\frac{z_j}{z_1}\frac{|a_1|^2}{|z_1|^2} (a+ib) \\&\qquad +\frac{z_j}{z_1} \frac{1}{2\pi i |z_1|^2} \overline{\left( \frac{a_1^2 \xi _j}{(a_1- a_j)^2}x_j + \frac{a_1^2 \xi _k}{(a_1- a_k)^2}x_k + R_{j,2}(x_j) + R_{k,2}(x_k) \right) }. \end{aligned}$$

All in all, we get

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t} x_j =&- x_j \frac{a+ib}{r^2} \\&+ \frac{1}{2\pi i |z_1|^2} \overline{\left( \frac{a_1^2 \xi _k}{(a_j- a_k)^2}(x_j-x_k)+ \frac{a_1^2 \xi _1}{(a_j- a_1)^2}x_j \right) } \\&+ \left( x_j + \frac{a_j}{a_1} \right) \frac{1}{2\pi i |z_1|^2} \overline{\left( \frac{a_1^2 \xi _j}{(a_1- a_j)^2}x_j + \frac{a_1^2 \xi _k}{(a_1- a_k)^2}x_k \right) } \\&+ \frac{1}{2\pi i |z_1|^2} \overline{\left( R_{j,k,2}(x_j-x_k) - \frac{\xi _1}{\xi _j}R_{j,2}(x_k)\right) } \\&+ \left( x_j + \frac{a_j}{a_1} \right) \frac{1}{2\pi i |z_1|^2} \overline{\left( R_{j,2}(x_j) + R_{k,2}(x_k) \right) } \\&+\frac{1}{z_1} \overline{f(t,z_j)} -\frac{z_j}{z_1^2}\overline{f(t,z_1)}. \end{aligned}$$

We arrive at the expression in Lemma 2.7, that is

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t}x_j = \frac{L_{j}(x_2,x_3,\overline{x_2},\overline{x_3})}{r^2} + \frac{\omega _j(x_2,x_3,x_2-x_3)}{r^2} +\frac{1}{z_1} \overline{f(t,z_j)} -\frac{z_j}{z_1^2}\overline{f(t,z_1)}. \end{aligned}$$

by collecting linear terms into \(L_2,L_3\) and the remainders R into holomorphic functions \(\omega _j\) satisifying, for all \(|x_2|, |x_3|, |x_2-x_3| < \rho '\),

$$\begin{aligned}&|\omega _{j}(x_2,x_3,x_2-x_3)| \leqq C \left( |x_2|^2 + |x_3|^2\right) ,\\&|\nabla \omega _{j}(x_2,x_3,x_2-x_3)|\leqq C \left( |x_2| + |x_3|\right) , \end{aligned}$$

where we redefined for the last time constants \(C,\rho '>0\) depending only on \(\xi ,a_1,a_2,a_3\). Notice that the proof has used, up to this point, only the fact that parameters \(a,b,a_1,a_2,a_3\) satisfy (2.3) (rather than the particular choice in the end of proof of Lemma 2.3).

1.3 Proof of Lemma 2.7: Eigenvalues

We are left to prove the statement on eigenvalues of the matrix

$$\begin{aligned} L = \left( L_2,L_3,{{\bar{L}}}_2,{{\bar{L}}}_3\right) =\left( \begin{array}{cccc} -a-i b &{} 0 &{} L_{13} &{} L_{14} \\ 0 &{} -a-i b &{} L_{23} &{} L_{24} \\ \overline{L_{13}} &{} \overline{L_{14}} &{} -a + i b &{} 0 \\ \overline{L_{23}} &{} \overline{L_{24}} &{} 0 &{} -a + i b \end{array}\right) , \end{aligned}$$

where

$$\begin{aligned} L_{13} =&\frac{1}{2\pi i |a_1|^2} \overline{ \left( \frac{a_1^2 \xi _3}{(a_2-a_3)^2}+ \frac{a_1^2 \xi _1}{(a_2-a_1)^2}+ \frac{\overline{a_2}}{\overline{a_1}}\frac{a_1^2 \xi _2}{(a_1-a_2)^2} \right) }, \\ L_{14} =&\frac{1}{2\pi i |a_1|^2} \overline{ \left( -\frac{a_1^2 \xi _3}{(a_2-a_3)^2}+ \frac{\overline{a_2}}{\overline{a_1}}\frac{a_1^2 \xi _3}{(a_1-a_3)^2} \right) }, \\ L_{23} =&\frac{1}{2\pi i |a_1|^2} \overline{ \left( -\frac{a_1^2 \xi _2}{(a_3-a_2)^2}+ \frac{\overline{a_3}}{\overline{a_1}}\frac{a_1^2 \xi _2}{(a_1-a_2)^2} \right) }, \\ L_{24} =&\frac{1}{2\pi i |a_1|^2} \overline{ \left( \frac{a_1^2 \xi _2}{(a_3-a_2)^2}+ \frac{a_1^2 \xi _1}{(a_3-a_1)^2}+ \frac{\overline{a_3}}{\overline{a_1}}\frac{a_1^2 \xi _3}{(a_1-a_3)^2} \right) }. \end{aligned}$$

The eigenvalues of L coincide with the roots of its characteristic polynomial, which is given by

$$\begin{aligned} p(\lambda )&= y^2 - y c_1 + c_2,\\ y&=(-a-i b -\lambda )(-a+i b -\lambda ) = (a+\lambda )^2 + b^2,\\ c_1&=L_{23}\overline{L_{14}} + L_{24}\overline{L_{24}} + L_{13}\overline{L_{13}} + L_{14}\overline{L_{23}}, \\ c_2&=L_{13}\overline{L_{13}}L_{24}\overline{L_{24}}+ L_{23}\overline{L_{23}}L_{14}\overline{L_{14}} - L_{14}\overline{L_{13}}L_{23}\overline{L_{24}} - L_{13}\overline{L_{14}}L_{24}\overline{L_{23}}. \end{aligned}$$

Notice that \(c_1,c_2 \in {\mathbb {R}}\). We now impose that the eigenvalues have the form \(-a + i \mu \), \(\mu \in {\mathbb {R}}\). This is true if and only if \(y=b^2-\mu ^2\) solves

$$\begin{aligned} y^2 - y c_1 + c_2 = 0, \end{aligned}$$

which, in terms of \(\mu \), becomes

$$\begin{aligned} \mu ^4 + \mu ^2 (c_1 - 2b^2) + b^4 - b^2 c_1 + c_2 = 0. \end{aligned}$$

From this, we deduce that if it holds that

$$\begin{aligned} 2b^2 - c_1 \pm \sqrt{(2b^2 - c_1)^2 - 4(b^4 - b^2 c_1 + c_2)} > 0, \end{aligned}$$
(A.3)

there are 4 distinct solutions \(\mu \), producing 4 distinct roots of p, and thus all and only the eigenvalues. Only at this point of the proof we restrict ourselves to the particular choice of parameters made at the end of the proof of Lemma 2.3. Indeed, with such choice, (A.3) is satisfied independently from the sign of \(\xi \):

$$\begin{aligned} 2b^2 - c_1 \sim \xi ^2 \times 3.4463 \times 10^{-4}, \quad b^4 - b^2 c_1 + c_2 \sim \xi ^4 \times 2.7035 \times 10^{-9}, \end{aligned}$$

and this concludes the proof.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grotto, F., Pappalettera, U. Burst of Point Vortices and Non-uniqueness of 2D Euler Equations. Arch Rational Mech Anal 245, 89–125 (2022). https://doi.org/10.1007/s00205-022-01784-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-022-01784-2

Navigation