Skip to main content
Log in

The Blow-Up Rate for a Non-Scaling Invariant Semilinear Heat Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the semilinear heat equation

$$\begin{aligned} \partial _t u -\Delta u =f(u), \quad (x,t)\in {\mathbb {R}}^N\times [0,T),\qquad \qquad \qquad \qquad \qquad (1) \end{aligned}$$

with \(f(u)=|u|^{p-1}u\log ^a (2+u^2)\), where \(p>1\) is Sobolev subcritical and \(a\in {\mathbb {R}}\). We first show an upper bound for any blow-up solution of (1). Then, using this estimate and the logarithmic property, we prove that the exact blow-up rate of any singular solution of (1) is given by the ODE solution associated with (1), namely \(u' =|u|^{p-1}u\log ^a (2+u^2)\). In other words, all blow-up solutions in the Sobolev subcritical range are Type I solutions. To the best of our knowledge, this is the first determination of the blow-up rate for a semilinear heat equation where the main nonlinear term is not homogeneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cazenave, T., Lions, P.L.: Solutions globales d’équations de la chaleur semi linéaires. Commun. Partial Differ. Equ. 9(10), 955–978, 1984

    Article  Google Scholar 

  2. Collot, C., Merle, F., Raphael, P.: Dynamics near the ground state for the energy critical nonlinear heat equation in large dimensions. Commun. Math. Phys. 352, 103–157, 2017

    Article  MathSciNet  Google Scholar 

  3. del Pino, M., Musso, M., Wei, J.: Type II blow-up in the 5-dimensional energy critical heat equation. To appear in Acta Mathematica Sinica (Special issue in honor of Carlos Kenig).

  4. Duong, G.K., Nguyen, V.T., Zaag, H.: Construction of a stable blowup solution with a prescribed behavior for a non-scaling-invariant semilinear heat equation. Tunisian J. Math. 1(1), 13–45, 2019

    Article  MathSciNet  Google Scholar 

  5. Filippas, S., Herrero, M..A., Velàzquez, J..J..L..: Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456(2004), 2957–2982, 2000

    Article  ADS  MathSciNet  Google Scholar 

  6. Giga, Y., Kohn, R.V.: Asymptotically self-similar blow-up of semilinear heat equations. Commun. Pure Appl. Math. 38(3), 297–319, 1985

    Article  MathSciNet  Google Scholar 

  7. Giga, Y., Kohn, R.V.: Characterizing blowup using similarity variables. Indiana Univ. Math. J. 36, 1–40, 1987

    Article  MathSciNet  Google Scholar 

  8. Giga, Y., Kohn, R.V.: Nondegeneracy of blow up for semilinear heat equations. Commun. Pure Appl. Math. 42, 845–884, 1989

    Article  Google Scholar 

  9. Giga, Y., Matsui, S., Sasayama, S.: Blow up rate for semilinear heat equations with subcritical nonlinearity. Indiana Univ. Math. J. 53(2), 483–514, 2004

    Article  MathSciNet  Google Scholar 

  10. Hamza, M.A.: The blow-up rate for strongly perturbed semilinear wave equations in the conformal regime without a radial assumption. Asymptot. Anal. 97(3–4), 351–378, 2016

    MathSciNet  MATH  Google Scholar 

  11. Hamza, M.A., Saidi, O.: The blow-up rate for strongly perturbed semilinear wave equations. J. Dyn. Differ. Equ. 26, 1115–1131, 2014

    Article  MathSciNet  Google Scholar 

  12. Hamza, M.A., Saidi, O.: The blow-up rate for strongly perturbed semilinear wave equations in the conformal case. Math. Phys. Anal. Geom. 18(1), Art. 15, (2015)

  13. Hamza, M.A., Zaag, H.: A Lyapunov functional and blow-up results for a class of perturbations for semilinear wave equations in the critical case. J. Hyperbolic Differ. Equ. 9, 195–221, 2012

    Article  MathSciNet  Google Scholar 

  14. Hamza, M.A., Zaag, H.: A Lyapunov functional and blow-up results for a class of perturbed semilinear wave equations. Nonlinearity 25, 2759–2773, 2012

    Article  ADS  MathSciNet  Google Scholar 

  15. Hamza, M.A., Zaag, H.: The blow-up rate for a non-scaling invariant semilinear wave equations. J. Math. Anal. Appl. 483, 2, 2020

    Article  MathSciNet  Google Scholar 

  16. Hamza, M.A., Zaag, H.: The blow-up rate for a non-scaling invariant semilinear wave equations in higher dimensions. (2020). arXiv:2012.05374.

  17. Herrero, M.A., Velàzquez, J.J.L.: A blow up result for semilinear heat equations in the supercritical case. Unpublished.

  18. Harada, J.: A higher speed type II blowup for the five dimensional energy critical heat equation, to appear in Ann. Inst. H. Poincare Anal. Non Lineaire

  19. Matano, H., Merle, F.: On nonexistence of type II blowup for a supercritical nonlinear heat equation. Commun. Pure Appl. Math. 57, 1494–1541, 2004

    Article  MathSciNet  Google Scholar 

  20. Mizoguchi, N.: Type-II blowup for a semilinear heat equation. Adv. Differ. Equ. 9(11–12), 1279–1316, 2004

    MathSciNet  MATH  Google Scholar 

  21. Nguyen, V.T.: On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete Contin. Dyn. Syst. A 35(8), 3585–3626, 2015

    Article  MathSciNet  Google Scholar 

  22. Nguyen, V.T., Zaag, H.: Finite degrees of freedom for the refined blow-up profile of the semilinear heat equation. Ann. Sci. Éc. Norm. Supér (4) 50(5), 1241–1282, 2017

    Article  MathSciNet  Google Scholar 

  23. Nguyen, V.T., Zaag, H.: Blow-up results for a strongly perturbed semilinear heat equations: theoretical analysis and numerical method. Anal. PDE 9(1), 229–257, 2016

    Article  MathSciNet  Google Scholar 

  24. Quittner, P.: A priori bounds for global solutions of a semilinear parabolic problem. Acta Math. Univ. Comenian. (N.S.) 68(2), 195–203, 1999

    MathSciNet  MATH  Google Scholar 

  25. Schweyer, R.: Type II blow-up for the four dimensional energy critical semi linear heat equation. J. Funct. Anal. 263(12), 3922–3983, 2012

    Article  MathSciNet  Google Scholar 

  26. Seki, Y.: Type II blow-up mechanisms in a semilinear heat equation with critical Joseph-Lundgren exponent. J. Funct. Anal. 275(12), 3380–3456, 2018

    Article  MathSciNet  Google Scholar 

  27. Seki, Y.: Type II blow-up mechanisms in a semilinear heat equation with Lepin exponent. J. Differ. Equ. 268(3), 853–900, 2020

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ali Hamza.

Additional information

Communicated by N. Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

We recall the interpolation result from Cazenave and Lions [1] and the interior regularity theorem in [6].

Lemma A.1

(Interpolation technique, Cazenave and Lions [1]) Let \(t_0>0\). Assume that

$$\begin{aligned} v \in L^\alpha \left( [t_0,t_0+1]; L^\beta ({\mathbf {B}}_R) \right) , \; \partial _tv \in L^\gamma \left( [t_0,t_0+1]; L^\delta ({\mathbf {B}}_R) \right) \end{aligned}$$

for some \(1< \alpha , \beta , \gamma , \delta < \infty \). Then

$$\begin{aligned} v \in {\mathscr {C}}\left( [t_0,t_0+1]; L^\lambda ({\mathbf {B}}_R) \right) \end{aligned}$$

for all \(\lambda < \lambda _0 = \frac{(\alpha + \gamma ')\beta \delta }{\gamma '\beta + \alpha \delta }\) with \(\gamma ' = \frac{\gamma }{\gamma - 1}\), and satisfies

$$\begin{aligned} \sup _{t \in [t_0,t_0+1]} \Vert v(t) \Vert _{L^\lambda ({\mathbf {B}}_R)} \leqq C \int _{t_0}^{t_0+1} \left( \Vert v(\tau )\Vert _{L^\beta ({\mathbf {B}}_R)}^\alpha + \Vert \partial _\tau v(\tau )\Vert _{L^\delta ({\mathbf {B}}_R)}^\gamma \right) {\mathrm {d}}\tau \end{aligned}$$

for \(\lambda < \lambda _0\). The positive constant C depends only on \(\alpha , \beta , \gamma , \delta , N\) and R.

The second one is an interior regularity result for a nonlinear parabolic equation:

Lemma A.2

(Interior regularity) Let \(v(x,t)\in L^\infty \big ((0,+\infty ), L^2({\mathbf {B}}_R)\big ) \cap L^2\big ((0,+\infty ), H^1({\mathbf {B}}_R)\big )\) which satisfies

$$\begin{aligned} v_t - \Delta v + b. \nabla v = H,\quad (x,t) \in Q_R = {\mathbf {B}}_R \times (0, +\infty ), \end{aligned}$$
(A.1)

where \(R > 0\), \(|b(x,t)| \leqq \mu _1\) in \(Q_R\) and \(|H(x,t,v)| \leqq g(x,t)(|v| + 1)\) with

$$\begin{aligned} \int _{t}^{t +1} \left\| g(\tau )\right\| ^{\beta '}_{L^{\alpha '}({\mathbf {B}}_R)}d\tau \leqq \mu _2, \quad \forall t \in (0, +\infty ), \end{aligned}$$
(A.2)

and \(\frac{1}{\beta '} + \frac{N}{2\alpha '} < 1\), and \(\alpha ' \geqq 1\). If

$$\begin{aligned} \int _{t}^{t +1} \Vert v(\tau )\Vert ^2_{L^2({\mathbf {B}}_R)}d\tau \leqq \mu _3,\quad \forall t \in (0, +\infty ), \end{aligned}$$
(A.3)

and \(\mu _1\), \(\mu _2\) and \(\mu _3\) are uniformly bounded in t, then there exists a positive constant C depending only on \(\mu _1\), \(\mu _2\), \(\mu _3\), \(\alpha '\), \(\beta '\), N, R and \(\tau \in (0,1)\) such that

$$\begin{aligned} |v(x,t)| \leqq C,\quad \forall (x,t) \in {\mathbf {B}}_{R/4} \times (\tau , +\infty ). \end{aligned}$$

Some Elementary Lemmas

Let f, F, \(F_2\) be the functions defined in (1.2), (1.25) and (2.14). Clearly, we have

Lemma B.1

Let \(q>1\),

$$\begin{aligned} \int _0^u|v|^{q-1}v\log ^{{a}}(2+v^2 ){\mathrm {d}}v\sim&\frac{| u|^{q+1}}{q+1}\log ^{{a}}(2+u^2 ),\quad \text { as } \;\; |u| \rightarrow \infty , \end{aligned}$$
(B.1)
$$\begin{aligned} F(u) \sim&\frac{uf(u)}{p+1} \quad \text { as } \;\; |u| \rightarrow \infty , \end{aligned}$$
(B.2)
$$\begin{aligned} F_2(u)\sim&\frac{Cuf(u)}{\log ^2(2+u^2)}\quad \text { as } \;\; |u| \rightarrow \infty . \end{aligned}$$
(B.3)

Proof

See Lemma A.1 in [15]. \(\square \)

Thanks to (B.1), (B.2) and (B.3), we will give the first and the second order terms in the expansion of the nonlinearity F(x) defined in (1.25), when |x| is large enough. More precisely, we now state the following estimates:

Lemma B.2

For all \(s \geqq 1\), for all \(z\in {\mathbb {R}}\),

$$\begin{aligned} C^{-1} \phi (s)z f(\phi (s)z))\leqq C+F\left( \phi (s)z)\leqq C (1+\phi (s)z f(\phi (s)z)\right) , \end{aligned}$$
(B.4)
$$\begin{aligned} F_1(\phi (s)z)\leqq C+C\frac{ \phi (s)z}{s}f(\phi (s)z),\quad \quad \end{aligned}$$
(B.5)
$$\begin{aligned} F_2(\phi (s)z)\leqq C+C \frac{ \phi (s)z}{s^2}f(\phi (s)z),\quad \quad \end{aligned}$$
(B.6)
$$\begin{aligned} e^{-\frac{ps}{p-1}}s^{\frac{a}{p-1}} |f(\phi (s)z)|\leqq C (\varepsilon ) + C |z|^{p+\varepsilon }, \quad \quad \forall \varepsilon \in (0,p-1), \end{aligned}$$
(B.7)
$$\begin{aligned} |z|^{p-\varepsilon }\leqq C e^{-\frac{ps}{p-1}}s^{\frac{a}{p-1}} | f(\phi (s)z)|+C (\varepsilon ), \quad \quad \forall \varepsilon \in (0,p-1), \end{aligned}$$
(B.8)
$$\begin{aligned} e^{-\frac{(p+1)s}{p-1}}s^{\frac{2a}{p-1}} F(\phi (s)z)\leqq C (\varepsilon ) + C |z|^{p+ \varepsilon +1}, \quad \quad \forall \varepsilon \in (0,p-1), \end{aligned}$$
(B.9)
$$\begin{aligned} |z|^{p-\varepsilon +1}\leqq e^{-\frac{(p+1)s}{p-1}}s^{\frac{2a}{p-1}} F(\phi (s)z) +C (\varepsilon ),\quad \quad \forall \varepsilon \in (0,p-1), \end{aligned}$$
(B.10)

where \(\phi \), F, \(F_1\) and \(F_2\) are given in (1.20), (1.25), (2.13) and (2.14).

Proof

Note that (B.4) obviously follows from (B.2). In order to derive estimates (B.5) and (B.6), considering the first case \(z^2\phi (s)\geqq 4\), then the case \(z^2\phi (s)\leqq 4\), we would obtain (B.5) and (B.6) by using (B.1), (B.2) and(B.3). Similarly, by taking into account the inequality \(\log ^a (2+u^2)\leqq C(\varepsilon )+ C(\varepsilon ) |u|^{\varepsilon }\) , we conclude easily (B.7), (B.8), (B.9) and (B.10). This ends the proof of Lemma B.2. \(\square \)

Proof of Proposition 2.6

Let us first derive the upper bound for \({\mathscr {E}}_\psi \).

Proof

(Proof of the upper bound for \({\mathscr {E}}_\psi \)) Multiplying (1.18) by \( \partial _{s} w \psi ^2\rho (y)\) and integrating over \({\mathbb {R}}^N,\) we obtain

$$\begin{aligned} \frac{d}{ds}{\mathscr {E}}_\psi (w(s),s)=&- \int _{{\mathbb {R}}^N}(\partial _{s}w)^2\psi ^2\rho (y){\mathrm {d}}y- 2\int _{{\mathbb {R}}^N}\partial _{s}w\nabla w. \nabla \psi \psi \rho (y){\mathrm {d}}y\nonumber \\&+\underbrace{\frac{a}{(p-1)s}\int _{{\mathbb {R}}^N}w\partial _{s}w\psi ^2\rho (y){\mathrm {d}}y}_{\Sigma ^1_{2}(s)} \nonumber \\&+\underbrace{\frac{p+1}{p-1} e^{-\frac{(p+1)s}{p-1}}s^{\frac{2a}{p-1}}\int _{{\mathbb {R}}^N}\big ( F(\phi w)-\frac{\phi wf(\phi w)}{p+1} \big )\psi ^2\rho (y){\mathrm {d}}y}_{\Sigma ^2_{2}(s)}\nonumber \\&\underbrace{-\frac{2a}{p-1}e^{-\frac{(p+1)s}{p-1}}s^{\frac{2a}{p-1}-1}\int _{{\mathbb {R}}^N}\big ( F(\phi w)-\frac{\phi wf(\phi w)}{2}\big )\psi ^2 \rho (y){\mathrm {d}}y}_{\Sigma ^3_{2}(s)}. \end{aligned}$$
(C.1)

Proceeding similarly as for the terms \(\Sigma _{1}^{1}(s)\), \(\Sigma _{1}^{2}(s)\) and \( \Sigma _{1}^{3}(s)\) defined in (2.10), we get

$$\begin{aligned} \frac{d}{ds}{\mathscr {E}}_\psi (w(s),s)\leqq&- \frac{1}{2}\int _{{\mathbb {R}}^N}\psi ^2 (\partial _{s}w)^2\rho (y){\mathrm {d}}y- 2\int _{{\mathbb {R}}^N}\partial _{s}w\psi \nabla \psi . \nabla w\rho (y){\mathrm {d}}y\nonumber \\&+ \frac{C}{s^{a+1}}\int _{{\mathbb {R}}^N}\psi ^2|w|^{p+1}\log ^a(2+\phi ^2w^2)\rho (y){\mathrm {d}}y\nonumber \\&+\frac{C}{s^2}\int _{{\mathbb {R}}^N}\psi ^2 w^2\rho (y){\mathrm {d}}y+C e^{-s}. \end{aligned}$$
(C.2)

Using the fact that \(2ab \leqq \frac{a^2}{4} + 4b^2\), we obtain

$$\begin{aligned} -2 \partial _{s}w\psi \nabla \psi . \nabla w \leqq \frac{1}{4}\psi ^2 (\partial _sw)^2 + 4 |\nabla \psi |^2 |\nabla w|^2, \end{aligned}$$

which implies, for all \(s\geqq \max (-\log T,1)\),

$$\begin{aligned} \frac{d}{ds}{\mathscr {E}}_\psi (w(s),s)\leqq&\ \ C \int _{{\mathbb {R}}^N}|\nabla w|^2\rho (y){\mathrm {d}}y+ \frac{C}{s^{a+1}}\int _{{\mathbb {R}}^N}|w|^{p+1}\log ^a(2+\phi ^2w^2)\rho (y){\mathrm {d}}y\nonumber \\&+\frac{C}{s^2}\int _{{\mathbb {R}}^N}w^2\rho (y){\mathrm {d}}y+C e^{-s}, \end{aligned}$$
(C.3)

where \(C = C(a, p, N, \Vert \psi \Vert _{L^\infty }, \Vert \nabla \psi \Vert _{L^\infty })\).

By combining (C.3), (2.40) and (2.41), we infer for all \(s\geqq \max (-\log T,S_2)\)

$$\begin{aligned} \int _s^{s+1} \frac{d}{ds}{\mathscr {E}}_\psi (w(\tau ),\tau ){\mathrm {d}}\tau \leqq Q_1 s^{b+1}. \end{aligned}$$
(C.4)

From the definition of \({\mathscr {E}}_\psi \) given in (2.48), using the fact that, \(F(\phi w)\geqq 0,\) we have

$$\begin{aligned} {\mathscr {E}}_\psi (w(s),s)&\leqq \Vert \psi \Vert ^2_{L^\infty } \int _{\mathbb {R}^N}\left( \frac{1}{2}|\nabla w|^2 + \frac{1}{2(p-1)}|w|^2 \right) \rho (y){\mathrm {d}}y. \end{aligned}$$

By the definition of \(H_{m}(w(s),s)\) given in (2.5), exploiting (2.39), we write for all \(s\geqq \max (-\log T,S_2)\)

$$\begin{aligned} {\mathscr {E}}_\psi (w(s),s)&\leqq C \left\{ H_{m_0}(w(s),s)+\frac{m_0}{2s} \int _{\mathbb {R}^N}w^2\rho (y){\mathrm {d}}y+e^{-\frac{(p+1)s}{p-1}}s^{\frac{2a}{p-1}} \int _{\mathbb {R}^N} F(\phi w)\rho (y){\mathrm {d}}y\right\} \nonumber \\&\leqq Q_2 s^{b+1} +Ce^{-\frac{(p+1)s}{p-1}}s^{\frac{2a}{p-1}} \int _{\mathbb {R}^N} F(\phi w)\rho (y){\mathrm {d}}y. \end{aligned}$$
(C.5)

Integrating the inequality (C.5) from s to \(s+1\) and using (2.17), (B.4) and (2.41) we get, for all \(s\geqq \max (-\log T,S_2)\)

$$\begin{aligned} \int _s^{s+1} {\mathscr {E}}_\psi (w(\tau ),\tau ) {\mathrm {d}}\tau \leqq Q_3s^{b+1}. \end{aligned}$$

By using the mean value theorem, we derive the existence of \(\sigma (s)\in [s,s+1]\) such that

$$\begin{aligned} {\mathscr {E}}_\psi (w(\sigma (s)),\sigma (s)) =\int _{s}^{s+1} {\mathscr {E}}_\psi (w(\tau ),\tau ){\mathrm {d}}\tau . \end{aligned}$$
(C.6)

Let us write the identity, for all \(s\geqq \max (-\log T,S_2)\)

$$\begin{aligned} {\mathscr {E}}_\psi (w(s),s)=&{\mathscr {E}}_\psi (w(\sigma (s)),\sigma (s)) + \int _{\sigma (s)}^{s}\frac{d}{d \tau } {\mathscr {E}}_\psi (w(\tau ),\tau ){\mathrm {d}}\tau . \end{aligned}$$
(C.7)

By combining (C.6), (C.7) and (C.4), we infer, for all \(s\geqq \max (-\log T,S_2)\)

$$\begin{aligned} {\mathscr {E}}_\psi (w(s),s)=&\leqq Q_4s^{b+1}. \end{aligned}$$
(C.8)

This concludes the proof of the upper bound for \({\mathscr {E}}_\psi \). \(\square \)

It remains to prove the lower bound.

[Proof of the lower bound for \({\mathscr {E}}_\psi \)]

Consider now, for all \(s \geqq \max (-\log T,1)\),

$$\begin{aligned} {\mathscr {I}}_\psi (w(s),s)=\frac{1}{s^{b+1}}\int _{{\mathbb {R}}^N}w^2 \psi ^2 \rho (y){\mathrm {d}}y. \end{aligned}$$

Multiplying equation (1.18) with \(\psi ^2 w,\) integrating on \(\mathbb {R}^N\) and using the same argument as in the proof of Lemma 2.3 yields

$$\begin{aligned} \frac{d}{ds}{\mathscr {I}}_\psi (w(s),s)\ \geqq&\ -\frac{p+3}{s^{b+1}}{\mathscr {E}}_{\psi }(w(s),s) + \frac{1}{2s^{b+1}}(1-\frac{C_4}{s}) \int _{{\mathbb {R}}^N}w^2 \psi ^2\rho (y){\mathrm {d}}y\nonumber \\&\ +\frac{p-1}{(p+1)s^{a+b+1}}(1-\frac{C_4}{s})\int _{{\mathbb {R}}^N}|w|^{p+1}\log ^a(2+\phi ^2 w^2) \psi ^2 \rho (y){\mathrm {d}}y\nonumber \\&- \frac{4}{s^{b+1}} \int _{\mathbb {R}^N} w \nabla w.\nabla \psi \psi \rho (y){\mathrm {d}}y. \end{aligned}$$
(C.9)

Therefore, there exists \({\tilde{S}}_2>S_2\) large enough, such that for all \(s \geqq \max (-\log T, {\tilde{S}}_2)\), we have

$$\begin{aligned} \frac{d}{ds}{\mathscr {I}}_\psi (w(s),s)\ \geqq&\ \frac{p-1}{2(p+1)s^{a+b+1}}\int _{{\mathbb {R}}^N}|w|^{p+1}\log ^a(2+\phi ^2 w^2) \psi ^2\rho (y){\mathrm {d}}y\nonumber \\&\ -\frac{p+3}{s^{b+1}}{\mathscr {E}}_{\psi }(w(s),s)- \frac{4}{s^{b+1}} \int _{\mathbb {R}^N} w \nabla w.\nabla \psi \psi \rho (y){\mathrm {d}}y. \end{aligned}$$
(C.10)

Furthermore, after some integration by parts, we write

$$\begin{aligned}&-4 \int _{\mathbb {R}^N} w \nabla w.\nabla \psi \psi \rho (y){\mathrm {d}}y=2\int _{\mathbb {R}^N} w^2\, \text{ div }\, (\psi \rho (y)\nabla \psi ) {\mathrm {d}}y\nonumber \\&=2\int _{\mathbb {R}^N} w^2 |\nabla \psi |^2 \rho (y){\mathrm {d}}y+ 2 \int _{\mathbb {R}^N} w^2 \psi \Delta \psi \rho (y){\mathrm {d}}y- \int _{\mathbb {R}^N} w^2\psi y.\nabla \psi \rho (y){\mathrm {d}}y. \end{aligned}$$
(C.11)

Thanks to the estimates \( \Vert \psi \Vert ^2_{L^\infty } +\Vert \Delta \psi \Vert ^2_{L^\infty } + \Vert \nabla \psi \Vert ^2_{L^\infty }+ \Vert y.\nabla \psi \Vert ^2_{L^\infty }\leqq C\), (C.11) and (2.42), we have for all \(s \geqq \max (-\log T, {\tilde{S}}_2)\),

$$\begin{aligned} \Big |-4 \int _{\mathbb {R}^N} w \nabla w.\nabla \psi \psi \rho (y){\mathrm {d}}y\Big | \leqq C \int _{\mathbb {R}^N} w^2\rho (y){\mathrm {d}}y\leqq Q_5s^{b+1}. \end{aligned}$$
(C.12)

Using (C.10) and (C.12), we obtain for all \(s \geqq \max (-\log T, {\tilde{S}}_2),\)

$$\begin{aligned} \frac{d}{ds}{\mathscr {I}}_\psi (w(s),s)\ \geqq&\ \frac{p-1}{2(p+1)s^{a+b+1}}\int _{{\mathbb {R}}^N}|w|^{p+1}\log ^a(2+\phi ^2 w^2) \psi ^2\rho (y){\mathrm {d}}y\nonumber \\&\ -\frac{p+3}{s^{b+1}}{\mathscr {E}}_{\psi }(w(s),s)-Q_5. \end{aligned}$$
(C.13)

Let us define the following functional:

$$\begin{aligned} {\mathscr {G}}_{\psi }(w(s),s) = \frac{ p+3}{s^{b+1}}{\mathscr {E}}_{\psi }(w(s),s)+ Q_5, \end{aligned}$$
(C.14)

where \({\mathscr {G}}_{\psi }(w(s),s) \) is defined in (2.48).

We claim that the function of \({\mathscr {G}}_{\psi }(w(s),s) \) is bounded from below by some constant M, where M is a sufficiently large constant that will be determined later. Arguing by contradiction, we suppose that there exists a time \(s^* \geqq \max (-\log T, {\tilde{S}}_2)\) such that \({\mathscr {G}}_{\psi }(w(s^*),s^*) \leqq - Q\), for some \(Q>0\). Then, we write

$$\begin{aligned} {\mathscr {G}}_{\psi }(w(s),s) \leqq -Q + \int _{s^*}^s\frac{d}{d\tau } {\mathscr {G}}_{\psi }(w(\tau ),\tau ) {\mathrm {d}}\tau , \qquad \forall s \geqq s^*. \end{aligned}$$
(C.15)

If we now compute the time derivative of \({\mathscr {G}}_{\psi }(w(s),s) \) we get for all \(s \geqq s^*,\)

$$\begin{aligned} \frac{d}{ds} {\mathscr {G}}_{\psi }(w(s),s) =&\frac{ p+3}{s^{b+1}}\ \frac{d}{ds}{\mathscr {E}}_{\psi }(w(s),s)-\frac{(b+1) (p+3)}{s^{b+2}}{\mathscr {E}}_{\psi }(w(s),s). \end{aligned}$$
(C.16)

From the definition of \({\mathscr {E}}_\psi \) given in (2.48), using (B.4) and (2.17) we have for all \(s \geqq s^*,\)

$$\begin{aligned} -\frac{(b+1) (p+3)}{s^{b+2}}{\mathscr {E}}_{\psi }(w(s),s) \leqq \frac{C}{s^{a+b+2}}\int _{{\mathbb {R}}^N}|w|^{p+1}\log ^a(2+\phi ^2 w^2) \psi ^2 \rho (y){\mathrm {d}}y+Ce^{-s}. \end{aligned}$$
(C.17)

Thanks to (C.4) we conclude for all \(s \geqq s^*,\)

$$\begin{aligned} \int _{s^*}^{s} \frac{1}{\tau ^{b+1}}\frac{d}{ds}{\mathscr {E}}_\psi (w(\tau ),\tau ){\mathrm {d}}\tau \leqq Q_6 (s-s^*). \end{aligned}$$
(C.18)

Moreover, from (2.41), we obtain for all \(s \geqq s^*,\)

$$\begin{aligned} \int _{s^*}^{s}\frac{1}{ \tau ^{a+b+2}} \int _{{\mathbb {R}}^N}|w|^{p+1}\log ^a(2+\phi ^2 w^2) \psi ^2 \rho (y){\mathrm {d}}y{\mathrm {d}}\tau \leqq Q_7(s-s^*). \end{aligned}$$
(C.19)

Integrating the identity (C.16) over \([s^*,s]\) and combining (C.17), (C.18) and (C.19) we deduce that

$$\begin{aligned} \ \int _{s^*}^s\frac{d}{d\tau } {\mathscr {G}}_{\psi }(w(\tau ),\tau ) {\mathrm {d}}\tau \leqq Q_8(s - s^*), \qquad \forall s \geqq s^*. \end{aligned}$$
(C.20)

Combining (C.13), (C.15) and (C.20) we infer for all \(s\geqq s^*,\)

$$\begin{aligned} \frac{d}{ds}{\mathscr {I}}_\psi (w(s),s)\ \geqq&\ Q - Q_8(s - s^*) +\frac{C}{s^{a+b+1}}\int _{{\mathbb {R}}^N}|w|^{p+1}\log ^a(2+\phi ^2 w^2) \psi ^2\rho (y){\mathrm {d}}y. \end{aligned}$$
(C.21)

Thanks to (B.4) and (B.10), we have for all \(s\geqq s^*,\) that

$$\begin{aligned} \frac{1}{s^a}\int _{{\mathbb {R}}^N} {| w|^{p+1}}\log ^{{a}}(2+\phi ^2 w^2 ) \psi ^2 \rho (y){\mathrm {d}}y\geqq C\int _{{\mathbb {R}}^N} {| w|^{\frac{p+3}{2}}} \psi ^2\rho (y){\mathrm {d}}y- C_5.\nonumber \\ \end{aligned}$$
(C.22)

Due to Jensen inequality, (C.21) and (C.22) we find for all \(s\geqq s^*,\)

$$\begin{aligned} \frac{d}{ds}{\mathscr {I}}_\psi (w(s),s)\ \geqq&\ {\tilde{Q}} - Q_{9}(s - s^*) +C_6\Big ({\mathscr {I}}_\psi (w(s),s)\Big )^{\frac{p+3}{4}}, \end{aligned}$$
(C.23)

where \({\tilde{Q}}=Q-C_5\).

It is interesting to denote that we easily prove that the solution of the differential inequality

$$\begin{aligned} \left\{ \begin{array}{l} h' (s)\geqq 1 + C_6h^{\frac{p+3}{4}}(s),\qquad s>s^*,\\ \\ h(s^*) \geqq 0 \end{array} \right. \end{aligned}$$

blows up in finite time before

$$\begin{aligned} s = s^* + \int _{0}^{+\infty }\frac{d\xi }{1 + C_6\xi ^\frac{p+3}{4}} = s^* + T^*. \end{aligned}$$

Now, we choose \(Q= Q_{9}T^* +C_5+ 1\) to get \({\tilde{Q}} - Q_{9}(s-s^*) \geqq 1\) for all \(s \in [s^*, s^* + T^*]\).

Therefore, \({\mathscr {I}}_\psi (w(s),s)\) blows up in some finite time before \(s^* + T^*\). But this contradicts with the global existence of w. This implies (2.50), and we complete the proof of Proposition 2.6. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamza, M.A., Zaag, H. The Blow-Up Rate for a Non-Scaling Invariant Semilinear Heat Equation. Arch Rational Mech Anal 244, 87–125 (2022). https://doi.org/10.1007/s00205-022-01760-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-022-01760-w

Navigation