Skip to main content
Log in

On the Effect of Rotation on the Life-Span of Analytic Solutions to the 3D Inviscid Primitive Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the effect of the rotation on the life-span of solutions to the 3D hydrostatic Euler equations with rotation and the inviscid Primitive equations (PEs) on the torus. The space of analytic functions appears to be the natural space to study the initial value problem for the inviscid PEs with general initial data, as they have been recently shown to exhibit Kelvin–Helmholtz type instability. First, for a short interval of time that is independent of the rate of rotation \(|\Omega |\), we establish the local well-posedness of the inviscid PEs in the space of analytic functions. In addition, thanks to a fine analysis of the barotropic and baroclinic modes decomposition, we establish two results about the long time existence of solutions. (i) Independently of \(|\Omega |\), we show that the life-span of the solution tends to infinity as the analytic norm of the initial baroclinic mode goes to zero. Moreover, we show in this case that the solution of the 3D inviscid PEs converges to the solution of the limit system, which is governed by the 2D Euler equations. (ii) We show that the life-span of the solution can be prolonged unboundedly with \(|\Omega |\rightarrow \infty \), which is the main result of this paper. This is established for “well-prepared” initial data, namely, when only the Sobolev norm (but not the analytic norm) of the baroclinic mode is small enough, depending on \(|\Omega |\). Furthermore, for large \(|\Omega |\) and “well-prepared” initial data, we show that the solution to the 3D inviscid PEs is approximated by the solution to a simple limit resonant system with the same initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York, 1975

  2. Azérad, P., Guillén, F.: Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics. SIAM J. Math. Anal. 33, 847–859, 2001

    MathSciNet  MATH  Google Scholar 

  3. Babin, A., Ilyin, A.A., Titi, E.S.: On the regularization mechanism for the spatially periodic Korteweg-de Vries equation. Commun. Pure Appl. Math. 64, 591–648, 2011

    MATH  Google Scholar 

  4. Babin, A., Mahalov, A., Nicolaenko, B.: Regularity and integrability of 3D Euler and Navier–Stokes equations for rotating fluids. Asymptot. Anal. 15(2), 103–150, 1997

    MathSciNet  MATH  Google Scholar 

  5. Babin, A., Mahalov, A., Nicolaenko, B.: Global regularity of 3D rotating Navier–Stokes equations for resonant domains. Indiana Univ. Math. J. 48(3), 1133–1176, 1999

    MathSciNet  MATH  Google Scholar 

  6. Babin, A., Mahalov, A., Nicolaenko, B.: On the regularity of three-dimensional rotating Euler–Boussinesq equations. Math. Models Methods Appl. Sci. 9(7), 1089–1121, 1999

    MathSciNet  MATH  Google Scholar 

  7. Babin, A., Mahalov, A., Nicolaenko, B.: Fast singular oscillating limits and global regularity for the 3D primitive equations of geophysics. Math. Model. Numer. Anal. 34, 201–222, 1999

    MathSciNet  MATH  Google Scholar 

  8. Bardos, C., Titi, E.S.: Euler equations of incompressible ideal fluids. Russ. Math. Surv. 62(3), 409–451, 2007

    MATH  Google Scholar 

  9. Bertozzi, A.L., Majda, A.J.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  10. Blumen, W.: Geostrophic adjustment. Rev. Geophys. Space Phys. 10, 485–528, 1972

    ADS  Google Scholar 

  11. Brenier, Y.: Homogeneous hydrostatic flows with convex velocity profiles. Nonlinearity 12(3), 495–512, 1999

    ADS  MathSciNet  MATH  Google Scholar 

  12. Brenier, Y.: Remarks on the derivation of the hydrostatic Euler equations. Bull. Sci. Math. 127(7), 585–595, 2003

    MathSciNet  MATH  Google Scholar 

  13. Caflisch, R.E., Orellana, O.F.: Singular solutions and ill-posedness for the evolution of vortex sheets. SIAM J. Math. Anal. 20(2), 293–307, 1989

    ADS  MathSciNet  MATH  Google Scholar 

  14. Cao, C., Ibrahim, S., Nakanishi, K., Titi, E.S.: Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics. Commun. Math. Phys. 337, 473–482, 2015

    ADS  MathSciNet  MATH  Google Scholar 

  15. Cao, C., Li, J., Titi, E.S.: Global well-posedness of the 3D primitive equations with only horizontal viscosity and diffusivity. Commun. Pure Appl. Math. 69, 1492–1531, 2016

    MATH  Google Scholar 

  16. Cao, C., Li, J., Titi, E.S.: Strong solutions to the 3D primitive equations with only horizontal dissipation: near \(H^1\) initial data. J. Funct. Anal. 272(11), 4606–4641, 2017

    MathSciNet  MATH  Google Scholar 

  17. Cao, C., Li, J., Titi, E.S.: Global well-posedness of the 3D primitive equations with horizontal viscosity and vertical diffusivity. Phys. D, 2020. https://doi.org/10.1016/j.physd.2020.132606.

    Article  MathSciNet  Google Scholar 

  18. Cao, C., Lin, Q., Titi, E.S.: On the well-posedness of reduced \(3D\) primitive geostrophic adjustment model with weak dissipation. J. Math. Fluid Mech., 2020. https://doi.org/10.1007/s00021-020-00495-6.

    Article  MathSciNet  MATH  Google Scholar 

  19. Cao, C., Titi, E.S.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166, 245–267, 2007

    MathSciNet  MATH  Google Scholar 

  20. Cao, C., Titi, E.S.: Regularity “in large’’ for the 3D Salmon’s planetary geostrophic model of ocean dynamics. Math. Clim. Weather Forecast. 6(1), 1–15, 2020

    MathSciNet  Google Scholar 

  21. Chemin, J.-Y., Desjardines, B., Gallagher, I., Grenier, E.: Mathematical Geophysics. An Introduction to Rotating Fluids and the Navier–Stokes Equations. Clarendon Press, Oxford, 2006

  22. Constantin, P., Foias, C.: Navier–Stokes Equations, The University of Chicago Press, 1988

  23. Dietert, H., Gérard-Varet, D.: Well-posedness of the Prandtl equations without any structural assumption. Ann. PDE 5, 8, 2019. https://doi.org/10.1007/s40818-019-0063-6.

    Article  MathSciNet  MATH  Google Scholar 

  24. Dutrifoy, A.: Examples of dispersive effects in non-viscous rotating fluids. J. Math. Pures Appl. 84(9), 331–356, 2005

    MathSciNet  MATH  Google Scholar 

  25. Embid, P.F., Majda, A.J.: Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity. Commun. PDE 21, 619–658, 1996

    MathSciNet  MATH  Google Scholar 

  26. Ferrari, A.B., Titi, E.S.: Gevrey regularity for nonlinear analytic parabolic equations. Commun. Partial Differ. Equ. 23, 1–16, 1998

    MathSciNet  MATH  Google Scholar 

  27. Foias, C., Temam, R.: Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 87, 359–369, 1989

    MathSciNet  MATH  Google Scholar 

  28. Gérard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609, 2010

    MathSciNet  MATH  Google Scholar 

  29. Ghoul, T., Ibrahim, S., Lin, Q., Titi, E.S.: On the effect of rotation on the life-span of analytic solutions to the \(3D\) inviscid primitive equations. arXiv:2010.01740

  30. Gill, A.E.: Adjustment under gravity in a rotating channel. J. Fluid Mech. 103, 275–295, 1976

    ADS  Google Scholar 

  31. Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press, New York, 1982

  32. Grenier, E.: On the derivation of homogeneous hydrostatic equations. M2AN Math. Model. Numer. Anal. 33(5), 965–970, 1999

    MathSciNet  MATH  Google Scholar 

  33. Guo, Y., Simon, K., Titi, E.S.: Global well-posedness of a system of nonlinearly coupled KdV equations of Majda and Biello. Commun. Math. Sci. 13(5), 1261–1288, 2015

    MathSciNet  MATH  Google Scholar 

  34. Han-Kwan, D., Nguyen, T.: Illposedness of the hydrostatic Euler and singular Vlasov equations. Arch. Ration. Mech. Anal. 221(3), 1317–1344, 2016

    MathSciNet  MATH  Google Scholar 

  35. Hermann, A.J., Owens, W.B.: Energetics of gravitational adjustment in mesoscale chimneys. J. Phys. Oceanogr. 23, 346–371, 1993

    ADS  Google Scholar 

  36. Hieber, M., Kashiwabara, T.: Global well-posedness of the three-dimensional primitive equations in \(L^p\)-space. Arch. Ration. Mech. Anal. 221, 1077–1115, 2016

    MathSciNet  MATH  Google Scholar 

  37. Holton, J.R.: An Introduction to Dynamic Meteorology, 4th edn. Elsevier Academic Press, 2004

  38. Ibrahim, S., Lin, Q., Titi, E.S.: Finite-time blowup and ill-posedness in Sobolev spaces of the inviscid primitive equations with rotation. J. Differ. Equ. 286, 557–577, 2021

    ADS  MathSciNet  MATH  Google Scholar 

  39. Ibrahim, S., Yoneda, T.: Long time solvability of the Navier–Stokes–Boussinesq equations with almost periodic initial large data. J. Math. Sci. Univ. Tokyo 20(1), 1–25, 2013

    MathSciNet  MATH  Google Scholar 

  40. Kobelkov, G.M.: Existence of a solution in the large for the 3D large-scale ocean dynamics equaitons. C. R. Math. Acad. Sci. Paris 343, 283–286, 2006

    MathSciNet  MATH  Google Scholar 

  41. Koh, Y., Lee, S., Takada, R.: Strichartz estimates for the Euler equations in the rotating framework. J. Differ. Equ. 256, 707–744, 2014

    MATH  Google Scholar 

  42. Kostianko, A., Titi, E.S., Zelik, S.: Large dispertion, averaging and attractors: three 1D paradigms. Nonlinearity 31, 317–350, 2018

    ADS  MathSciNet  MATH  Google Scholar 

  43. Kukavica, I., Masmoudi, N., Vicol, V., Wong, T.: On the local well-posedness of the Prandtl and the hydrostatic Euler equations with multiple monotonicity regions. SIAM J. Math. Anal. 46(6), 3865–3890, 2014

    MathSciNet  MATH  Google Scholar 

  44. Kukavica, I., Temam, R., Vicol, V., Ziane, M.: Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain. J. Differ. Equ. 250(3), 1719–1746, 2011

    ADS  MathSciNet  MATH  Google Scholar 

  45. Kukavica, I., Ziane, M.: The regularity of solutions of the primitive equations of the ocean in space dimension three. C. R. Math. Acad. Sci. Paris 345, 257–260, 2007

    MathSciNet  MATH  Google Scholar 

  46. Kukavica, I., Ziane, M.: On the regularity of the primitive equations of the ocean. Nonlinearity 20, 2739–2753, 2007

    ADS  MathSciNet  MATH  Google Scholar 

  47. Kuo, A.C., Polvani, L.M.: Time-dependent fully nonlinear geostrophic adjustment. J. Phys. Oceanogr. 27, 1614–1634, 1997

    ADS  Google Scholar 

  48. Larios, A., Titi, E.S.: On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models. Discrete Contin. Dyn. Syst. Ser. B 14(2), 603–627, 2010

    MathSciNet  MATH  Google Scholar 

  49. Levermore, C.D., Oliver, M.: Analyticity of solutions for a generalized Euler equation. J. Differ. Equ. 133, 321–339, 1997

    ADS  MathSciNet  MATH  Google Scholar 

  50. Li, W., Masmoudi, N., Yang, T.: Well-posedness in Gevrey function space for \(3D\) Prandtl equations without structural assumption. Commun. Pur Appl. Math., 2021

  51. Li, J., Titi, E.S.: The primitive equations as the small aspect ratio limit of the Navier–Stokes equations: rigorous justification of the hydrostatic approximation. J. Math. Pures Appl. 124, 30–58, 2019

    MathSciNet  MATH  Google Scholar 

  52. Liu, H., Tamdor, E.: Rotation prevents finite-time breakdown. Phys. D 188, 262–276, 2004

    MathSciNet  MATH  Google Scholar 

  53. Masmoudi, N., Wong, T.: On the \(H^s\) theory of hydrostatic Euler equations. Arch. Ration. Mech. Anal. 204(1), 231–271, 2012

    MathSciNet  MATH  Google Scholar 

  54. Oliver, M.: “A Mathematical Investigation of Models of Shallow Water with a Varying Bottom,” Ph.d. dissertation, University of Arizona, Tucson, Arizona, 1996

  55. Plougonven, R., Zeitlin, V.: Lagrangian approach to the geostrophic adjustment of frontal anomalies in a stratified fluid. Geophys. Astrophys. Fluid Dyn. 99, 101–135, 2005

    ADS  MathSciNet  MATH  Google Scholar 

  56. Renardy, M.: Ill-posedness of the hydrostatic Euler and Navier–Stokes equations. Arch. Ration. Mech. Anal. 194(3), 877–886, 2009

    MathSciNet  MATH  Google Scholar 

  57. Rossby, C.G.: The mutual adjustment of pressure and velocity distribution in certain simple current systems, II. J. Mar. Res. 1, 239–263, 1938

    Google Scholar 

  58. Wong, T.K.: Blowup of solutions of the hydrostatic Euler equations. Proc. Am. Math. Soc. 143(3), 1119–1125, 2015

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for carefully reading the paper and for their useful remarks. Q. Lin would like to thank University of Victoria for the kind and warm hospitality where part of this work was completed, and would like to thank Xin Liu for interesting discussions. The work of E.S. Titi was supported in part by the Einstein Stiftung/Foundation - Berlin, through the Einstein Visiting Fellow Program. The work of S. Ibrahim was supported by NSERC Grant (371637-2019). The work of T. Ghoul was supported by SITE (Center for Stability, Instability, Turbulence and Experiments).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quyuan Lin.

Additional information

Communicated by N. Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Estimates of Nonlinear Terms

Appendix A. Estimates of Nonlinear Terms

In this appendix, we list the estimates of nonlinear terms in the space of analytic functions. Lemma A.1A.3 will be used to prove the local well-posedness.

First, we estimate nonlinear terms of the form \(f\cdot \nabla g\).

Lemma A.1

For \(f, g, h\in {\mathcal {D}}(e^{\tau A}: H^{r+\frac{1}{2}})\), where \(r>2\) and \(\tau \geqq 0\), one has

$$\begin{aligned} \begin{aligned} \Big |\Big \langle A^r e^{\tau A} (f\cdot \nabla g), A^r e^{\tau A} h \Big \rangle \Big | \le C_r\Big [&(\Vert A^r e^{\tau A} f\Vert + |{\hat{f}}_0| ) \Vert A^{r+\frac{1}{2}} e^{\tau A} g\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert \\&+ \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r} e^{\tau A} g\Vert \Vert A^{r} e^{\tau A} h\Vert \Big ]. \end{aligned} \end{aligned}$$

Proof

First, notice that \(\Big |\Big \langle A^r e^{\tau A} (f\cdot \nabla g), A^r e^{\tau A} h \Big \rangle \Big | = \Big |\Big \langle f\cdot \nabla g, A^r e^{\tau A} H \Big \rangle \Big | \), where \(H = A^r e^{\tau A} h\). We use Fourier representation of fg and H, in which we can write

$$\begin{aligned}&f({\varvec{x}}) = \sum \limits _{{\varvec{j}}\in {\mathbb {Z}}^3} {\hat{f}}_{{\varvec{j}}} e^{2\pi i{\varvec{j}}\cdot {\varvec{x}}}, \quad g({\varvec{x}}) = \sum \limits _{{\varvec{k}}\in {\mathbb {Z}}^3} {\hat{g}}_{{\varvec{k}}} e^{2\pi i{\varvec{k}}\cdot {\varvec{x}}}, \\&A^r e^{\tau A} H({\varvec{x}}) = \sum \limits _{{\varvec{l}}\in {\mathbb {Z}}^3} |{\varvec{l}}|^r e^{\tau |{\varvec{l}}|}{\hat{H}}_{{\varvec{l}}} e^{2\pi i{\varvec{l}}\cdot {\varvec{x}}}. \end{aligned}$$

Therefore,

$$\begin{aligned} \Big |\Big \langle f\cdot \nabla g, A^r e^{\tau A} H \Big \rangle \Big | \le \sum \limits _{{\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0} |{\hat{f}}_{{\varvec{j}}}||{\varvec{k}}||{\hat{g}}_{{\varvec{k}}}||{\varvec{l}}|^r e^{\tau |{\varvec{l}}|} |{\hat{H}}_{{\varvec{l}}}|. \end{aligned}$$

From \(|{\varvec{l}}| = |{\varvec{j}}+{\varvec{k}}| \le |{\varvec{j}}|+|{\varvec{k}}|\) we have the following inequalities:

$$\begin{aligned} |{\varvec{l}}|^r \le (|{\varvec{j}}|+|{\varvec{k}}|)^r \le C_r(|{\varvec{j}}|^r + |{\varvec{k}}|^r), \;\;\; e^{\tau |{\varvec{l}}|} \le e^{\tau |{\varvec{j}}|} e^{\tau |{\varvec{k}}|}. \end{aligned}$$

Applying these inequalities, we have

$$\begin{aligned} \Big |\Big \langle f\cdot \nabla g, A^r e^{\tau A} H \Big \rangle \Big | \le \sum \limits _{{\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0} C_r|{\hat{f}}_{{\varvec{j}}}||{\varvec{k}}||{\hat{g}}_{{\varvec{k}}}|(|{\varvec{j}}|^r+|{\varvec{k}}|^r)e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{k}}|}|{\varvec{l}}|^r e^{\tau |{\varvec{l}}|}|{\hat{h}}_{{\varvec{l}}}|. \end{aligned}$$

Since \(|{\varvec{k}}|, |{\varvec{j}}|, |{\varvec{l}}|\) are all nonnegative, we have \(|{\varvec{k}}|^{\frac{1}{2}} \le (|{\varvec{j}}|+|{\varvec{l}}|)^{\frac{1}{2}} \le |{\varvec{j}}|^{\frac{1}{2}} + |{\varvec{l}}|^{\frac{1}{2}}\), therefore,

$$\begin{aligned}&\Big |\Big \langle f\cdot \nabla g, A^r e^{\tau A} H \Big \rangle \Big | \\&\quad \le \sum \limits _{{\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0} C_r|{\hat{f}}_{{\varvec{j}}}||{\varvec{k}}|^{\frac{1}{2}}(|{\varvec{j}}|^{\frac{1}{2}} + |{\varvec{l}}|^{\frac{1}{2}})|{\hat{g}}_{{\varvec{k}}}|(|{\varvec{j}}|^r+|{\varvec{k}}|^r)e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{k}}|}|{\varvec{l}}|^r e^{\tau |{\varvec{l}}|}|{\hat{h}}_{{\varvec{l}}}| \nonumber \\&\quad \le \sum \limits _{{\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0} C_r \Big (|{\varvec{k}}|^{\frac{1}{2}}|{\varvec{j}}|^{r+\frac{1}{2}} |{\varvec{l}}|^{r} + |{\varvec{k}}|^{r+\frac{1}{2}}|{\varvec{j}}|^{\frac{1}{2}} |{\varvec{l}}|^{r} + |{\varvec{k}}|^{\frac{1}{2}}|{\varvec{j}}|^{r} |{\varvec{l}}|^{r+\frac{1}{2}} + |{\varvec{k}}|^{r+\frac{1}{2}}|{\varvec{l}}|^{r+\frac{1}{2}} \Big ) \nonumber \\&\qquad \times e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{k}}|} e^{\tau |{\varvec{l}}|} |{\hat{f}}_{{\varvec{j}}}| |{\hat{g}}_{{\varvec{k}}}| |{\hat{h}}_{{\varvec{l}}}| =: A_1 + A_2 + A_3 + A_4. \end{aligned}$$

Thanks to the Cauchy–Schwarz inequality, since \(r>2\), we have

$$\begin{aligned} A_1= & {} \sum \limits _{{\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0} C_r |{\varvec{k}}|^{\frac{1}{2}}|{\varvec{j}}|^{r+\frac{1}{2}} |{\varvec{l}}|^{r} e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{k}}|} e^{\tau |{\varvec{l}}|} |{\hat{f}}_{{\varvec{j}}}| |{\hat{g}}_{{\varvec{k}}}| |{\hat{h}}_{{\varvec{l}}}| \\= & {} C_r \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ {\varvec{k}}\ne 0 \end{array} } |{\varvec{k}}|^{\frac{1}{2}} |{\hat{g}}_{{\varvec{k}}}| e^{\tau |{\varvec{k}}|} \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ {\varvec{j}}\ne 0, -{\varvec{k}} \end{array} } |{\varvec{j}}|^{r+\frac{1}{2}} e^{\tau |{\varvec{j}}|}|{\hat{f}}_{{\varvec{j}}}| |{\varvec{j}}+{\varvec{k}}|^{r}e^{\tau |{\varvec{j}}+{\varvec{k}}|}|{\hat{h}}_{-{\varvec{j}}-{\varvec{k}}}| \\\le & {} C_r \Big ( \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ {\varvec{k}}\ne 0 \end{array} } |{\varvec{k}}|^{1-2r}\Big )^{\frac{1}{2}} \Big ( \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ {\varvec{k}}\ne 0 \end{array} } |{\varvec{k}}|^{2r} e^{2\tau |{\varvec{k}}|} |{\hat{g}}_{{\varvec{k}}}|^2\Big )^{\frac{1}{2}} \\&\times \sup \limits _{{\varvec{k}}\in {\mathbb {Z}}^3}\Big ( \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ {\varvec{j}}\ne 0, -{\varvec{k}} \end{array} } |{\varvec{j}}|^{2r+1}e^{2\tau |{\varvec{j}}|} |{\hat{f}}_{{\varvec{j}}}|^2\Big )^{\frac{1}{2}} \Big ( \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ {\varvec{j}}\ne 0, -{\varvec{k}} \end{array} } |{\varvec{j}}+{\varvec{k}}|^{2r}e^{2\tau |{\varvec{j}}+{\varvec{k}}|} |{\hat{h}}_{-{\varvec{j}}-{\varvec{k}}}|^2\Big )^{\frac{1}{2}} \\\le & {} C_r \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r} e^{\tau A} g\Vert \Vert A^{r} e^{\tau A} h\Vert , \end{aligned}$$

Similarly, we have

$$\begin{aligned} A_2= & {} \sum \limits _{{\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0} C_r |{\varvec{k}}|^{r+\frac{1}{2}}|{\varvec{j}}|^{\frac{1}{2}} |{\varvec{l}}|^{r} e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{k}}|} e^{\tau |{\varvec{l}}|} |{\hat{f}}_{{\varvec{j}}}| |{\hat{g}}_{{\varvec{k}}}| |{\hat{h}}_{{\varvec{l}}}| \\\le & {} C_r \Vert A^{r} e^{\tau A} f\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} g\Vert \Vert A^{r} e^{\tau A} h\Vert \text { and } \\ A_3= & {} \sum \limits _{{\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0} C_r |{\varvec{k}}|^{\frac{1}{2}}|{\varvec{j}}|^{r} |{\varvec{l}}|^{r+\frac{1}{2}} e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{k}}|} e^{\tau |{\varvec{l}}|} |{\hat{f}}_{{\varvec{j}}}| |{\hat{g}}_{{\varvec{k}}}| |{\hat{h}}_{{\varvec{l}}}| \\\le & {} C_r \Vert A^{r} e^{\tau A} f\Vert \Vert A^{r} e^{\tau A} g\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert . \end{aligned}$$

For \(A_4\), thanks to the Cauchy–Schwarz inequality, since \(r>2\), we have

$$\begin{aligned} A_4= & {} \sum \limits _{{\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0} C_r |{\varvec{k}}|^{r+\frac{1}{2}}|{\varvec{l}}|^{r+\frac{1}{2}} e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{k}}|} e^{\tau |{\varvec{l}}|} |{\hat{f}}_{{\varvec{j}}}| |{\hat{g}}_{{\varvec{k}}}| |{\hat{h}}_{{\varvec{l}}}| \\= & {} C_r \sum \limits _{{\varvec{j}}\in {\mathbb {Z}}^3 } e^{\tau |{\varvec{j}}|}|{\hat{f}}_{{\varvec{j}}}| \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ {\varvec{k}}\ne 0, -{\varvec{j}} \end{array} } |{\varvec{k}}|^{r+\frac{1}{2}} |{\hat{g}}_{{\varvec{k}}}| e^{\tau |{\varvec{k}}|} |{\varvec{j}}+{\varvec{k}}|^{r+\frac{1}{2}}e^{\tau |{\varvec{j}}+{\varvec{k}}|}|{\hat{h}}_{-{\varvec{j}}-{\varvec{k}}}| \\\le & {} C_r \Big \{ |{\hat{f}}_0| + \Big ( \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ {\varvec{j}}\ne 0 \end{array} } |{\varvec{j}}|^{-2r}\Big )^{\frac{1}{2}} \Big ( \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ {\varvec{j}}\ne 0 \end{array} } |{\varvec{j}}|^{2r} e^{2\tau |{\varvec{j}}|} |{\hat{f}}_{{\varvec{j}}}|^2\Big )^{\frac{1}{2}} \Big \} \\&\times \sup \limits _{{\varvec{j}}\in {\mathbb {Z}}^3} \Big ( \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ {\varvec{k}}\ne 0, -{\varvec{j}} \end{array} } |{\varvec{k}}|^{2r+1}e^{2\tau |{\varvec{k}}|} |{\hat{g}}_{{\varvec{k}}}|^2\Big )^{\frac{1}{2}} \Big ( \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ {\varvec{k}}\ne 0, -{\varvec{j}} \end{array} } |{\varvec{j}}+{\varvec{k}}|^{2r+1}e^{2\tau |{\varvec{j}}+{\varvec{k}}|} |{\hat{h}}_{-{\varvec{j}}-{\varvec{k}}}|^2\Big )^{\frac{1}{2}} \\\le & {} C_r (\Vert A^{r} e^{\tau A} f\Vert + |{\hat{f}}_0|) \Vert A^{r+\frac{1}{2}} e^{\tau A} g\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert . \end{aligned}$$

Combine the estimates for \(A_1\) to \(A_4\), and since \(\Vert A^{r} e^{\tau A} g\Vert \le \Vert A^{r+\frac{1}{2}} e^{\tau A} g\Vert \), \(\Vert A^{r} e^{\tau A} h\Vert \le \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert \), we achieve the desired inequality. \(\square \)

Similarly, we estimate \((\nabla \cdot f)g\) in the following:

Lemma A.2

For \(f, g, h\in {\mathcal {D}}(e^{\tau A}: H^{r+\frac{1}{2}})\), where \(r>2\) and \(\tau \geqq 0\), one has

$$\begin{aligned} \begin{aligned} \Big |\Big \langle A^r e^{\tau A} \big ((\nabla \cdot f)g\big ), A^r e^{\tau A} h \Big \rangle \Big | \le&C_r\Big [ (\Vert A^r e^{\tau A} g\Vert + |{\hat{g}}_0|) \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert \\&+ \Vert A^{r+\frac{1}{2}} e^{\tau A} g\Vert \Vert A^{r} e^{\tau A} f\Vert \Vert A^{r} e^{\tau A} h\Vert \Big ]. \end{aligned} \end{aligned}$$

The proof of Lemma A.2 is almost the same as Lemma A.1, so we omit it.

Finally, we provide an estimate for \((\int _0^z \nabla \cdot f({\varvec{x}}',s)ds)\partial _z g\) in the following:

Lemma A.3

For \(f, g, h\in {\mathcal {D}}(e^{\tau A}: H^{r+\frac{1}{2}})\), where \(r>2\), \(\tau \geqq 0\), and \({\overline{f}}=0\), one has

$$\begin{aligned} \begin{aligned}&\Big |\Big \langle A^r e^{\tau A} \big ((\int _0^z \nabla \cdot f({\varvec{x}}',s)ds)\partial _z g\big ), A^r e^{\tau A} h \Big \rangle \Big | \\&\quad \le C_r\Big ( \Vert A^r e^{\tau A} f\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} g\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert \\&\qquad + \Vert A^r e^{\tau A} g\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert \\&\quad + \Vert A^r e^{\tau A} h\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} g\Vert \Big ). \end{aligned} \end{aligned}$$

Proof

First, \(\Big |\Big \langle A^r e^{\tau A} \big ((\int _0^z \nabla \cdot f({\varvec{x}}',s)ds)\partial _z g\big ), A^r e^{\tau A} h \Big \rangle \Big | = \Big |\Big \langle (\int _0^z \nabla \cdot f({\varvec{x}}',s)ds)\partial _z g, A^r e^{\tau A} H \Big \rangle \Big | \). Since \({\overline{f}}=0\), one has \( f({\varvec{x}}) = \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3 \ne 0 \end{array}} {\hat{f}}_{{\varvec{j}}} e^{2\pi ( i{\varvec{j}}' \cdot {\varvec{x}}' + ij_3 z)} \) where \({\varvec{j}}'=(j_1,j_2)\). Then we have

$$\begin{aligned} \int _0^z \nabla \cdot f({\varvec{x}}',s) ds = \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3 \ne 0, {\varvec{j}}' \ne 0 \end{array}} \frac{1}{j_3}{\varvec{j}}'\cdot {\hat{f}}_{{\varvec{j}}} e^{2\pi ( i{\varvec{j}}' \cdot {\varvec{x}}' + ij_3 z)} - \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3 \ne 0, {\varvec{j}}' \ne 0 \end{array}} \frac{1}{j_3}{\varvec{j}}'\cdot {\hat{f}}_{{\varvec{j}}} e^{2\pi i{\varvec{j}}'\cdot {\varvec{x}}'}. \end{aligned}$$

Therefore,

$$\begin{aligned}&\Big |\Big \langle (\int _0^z \nabla \cdot f(s)ds)\partial _z g, A^r e^{\tau A} H \Big \rangle \Big |\\&\le \Big |\Big \langle (\sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3 \ne 0, {\varvec{j}}' \ne 0 \end{array}} \frac{1}{j_3}{\varvec{j}}'\cdot {\hat{f}}_{{\varvec{j}}} e^{2\pi ( i{\varvec{j}}' \cdot {\varvec{x}}' + ij_3 z)})\partial _z g, A^r e^{\tau A} H \Big \rangle \Big | \nonumber \\&\qquad + \Big |\Big \langle (\sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3 \ne 0, {\varvec{j}}' \ne 0 \end{array}} \frac{1}{j_3}{\varvec{j}}'\cdot {\hat{f}}_{{\varvec{j}}} e^{i{\varvec{j}}'\cdot {\varvec{x}}'})\partial _z g, A^r e^{\tau A} H \Big \rangle \Big | =: I_1 + I_2 . \end{aligned}$$

Let us estimate \(I_2\) first. For \({\varvec{l}} = ({\varvec{l}}', l_3) = (-{\varvec{j}}'-{\varvec{k}}', -k_3)\), by using the inequalities

$$\begin{aligned} |{\varvec{j}}'|^{\frac{1}{2}} \le C(|{\varvec{k}}|^{\frac{1}{2}} + |{\varvec{l}}|^{\frac{1}{2}}), \;\;\; |{\varvec{k}}|^{\frac{1}{2}} \le C(|{\varvec{j}}'|^{\frac{1}{2}} + |{\varvec{l}}|^{\frac{1}{2}}), \;\;\; |{\varvec{l}}|^r \le C_r (|{\varvec{j}}'|^r+|{\varvec{k}}|^r), \end{aligned}$$

one has

$$\begin{aligned} I_2\le & {} \sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}} C_r\frac{1}{|j_3|}|{\varvec{j}}'||k_3||{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}|(|{\varvec{j}}'|^r+|{\varvec{k}}|^r)e^{\tau |{\varvec{j}}'|}e^{\tau |{\varvec{k}}|}|{\varvec{l}}|^r e^{\tau |{\varvec{l}}|}|{\hat{h}}_{{\varvec{l}}}|\\\le & {} \sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}} C_r\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}|(|{\varvec{j}}'|^{r+1}|{\varvec{k}}|+|{\varvec{j}}'||{\varvec{k}}|^{r+1})e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{k}}|}|{\varvec{l}}|^r e^{\tau |{\varvec{l}}|}|{\hat{h}}_{{\varvec{l}}}| \\\le & {} \sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}} C_r \frac{1}{|j_3|}\Big (|{\varvec{k}}|^{\frac{3}{2}}|{\varvec{j}}'|^{r+\frac{1}{2}} |{\varvec{l}}|^{r} + |{\varvec{k}}||{\varvec{j}}'|^{r+\frac{1}{2}} |{\varvec{l}}|^{r+\frac{1}{2}} + |{\varvec{j}}'|^{\frac{3}{2}}|{\varvec{k}}|^{r+\frac{1}{2}} |{\varvec{l}}|^{r}\\&+ |{\varvec{j}}'||{\varvec{k}}|^{r+\frac{1}{2}}|{\varvec{l}}|^{r+\frac{1}{2}} \Big ) e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{k}}|} e^{\tau |{\varvec{l}}|} |{\hat{f}}_{{\varvec{j}}}| |{\hat{g}}_{{\varvec{k}}}| |{\hat{h}}_{{\varvec{l}}}| =: B_1 + B_2 + B_3 + B_4. \end{aligned}$$

When \(k_3 \ne 0\) and \(r>2\), we know that \(|{\varvec{k}}|^{1-r} \le |({\varvec{k}}',\pm 1)|^{1-r}\) and \(\sum \limits _{{\varvec{k}}'\in {\mathbb {Z}}^2} |({\varvec{k}}',\pm 1)|^{2-2r} \le C_r\) is finite. Thanks to the Cauchy–Schwarz inequality, we have

$$\begin{aligned} B_1= & {} \sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}} C_r \frac{1}{|j_3|} |{\varvec{k}}|^{\frac{3}{2}}|{\varvec{j}}'|^{r+\frac{1}{2}} |{\varvec{l}}|^{r} e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{k}}|} e^{\tau |{\varvec{l}}|} |{\hat{f}}_{{\varvec{j}}}| |{\hat{g}}_{{\varvec{k}}}| |{\hat{h}}_{{\varvec{l}}}| \\= & {} C_r \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array} } |{\varvec{k}}|^{\frac{3}{2}} |{\hat{g}}_{{\varvec{k}}}| e^{\tau |{\varvec{k}}|} \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}' \ne 0 \end{array} }\\&\frac{1}{|j_3|} |{\varvec{j}}'|^{r+\frac{1}{2}} e^{\tau |{\varvec{j}}|}|{\hat{f}}_{{\varvec{j}}}| |({\varvec{j}}'+{\varvec{k}}',k_3)|^{r}e^{\tau |({\varvec{j}}'+{\varvec{k}}',k_3)|}|{\hat{h}}_{-({\varvec{j}}'+{\varvec{k}}',k_3)}| \\\le & {} C_r \sum \limits _{{\varvec{k}}'\in {\mathbb {Z}}^2} |({\varvec{k}}',\pm 1)|^{1-r} \sum \limits _{k_3\ne 0} |{\varvec{k}}|^{r+\frac{1}{2}} |{\hat{g}}_{{\varvec{k}}}| e^{\tau |{\varvec{k}}|} \Big ( \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ {\varvec{j}}\ne 0 \end{array} } |{\varvec{j}}|^{2r+1} e^{2\tau |{\varvec{j}}|} |{\hat{f}}_{{\varvec{j}}}|^2\Big )^{\frac{1}{2}} \\&\times \Big ( \sum \limits _{j_3\ne 0} \frac{1}{|j_3|^2} \sum \limits _{{\varvec{j}}'\in {\mathbb {Z}}^2 } |({\varvec{j}}'+{\varvec{k}}',k_3)|^{2r}e^{2\tau |({\varvec{j}}'+{\varvec{k}}',k_3)|}|{\hat{h}}_{-({\varvec{j}}'+{\varvec{k}}',k_3)}|^2\Big )^{\frac{1}{2}} \\\le & {} C_r \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \sum \limits _{{\varvec{k}}'\in {\mathbb {Z}}^2} |({\varvec{k}}',\pm 1)|^{1-r} \Big (\sum \limits _{k_3\ne 0} |{\varvec{k}}|^{2r+1} |{\hat{g}}_{{\varvec{k}}}|^2 e^{2\tau |{\varvec{k}}|} \Big )^{\frac{1}{2}} \\&\times \Big ( \sum \limits _{k_3\ne 0} \sum \limits _{{\varvec{j}}'\in {\mathbb {Z}}^2 } |({\varvec{j}}'+{\varvec{k}}',k_3)|^{2r}e^{2\tau |({\varvec{j}}'+{\varvec{k}}',k_3)|}|{\hat{h}}_{-({\varvec{j}}'+{\varvec{k}}',k_3)}|^2\Big )^{\frac{1}{2}} \\\le & {} C_r \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r} e^{\tau A} h\Vert \Big (\sum \limits _{{\varvec{k}}'\in {\mathbb {Z}}^2} |({\varvec{k}}',\pm 1)|^{2-2r}\Big )^{\frac{1}{2}}\\&\Big ( \sum \limits _{{\varvec{k}}'\in {\mathbb {Z}}^2} \sum \limits _{k_3\ne 0} |{\varvec{k}}|^{2r+1} |{\hat{g}}_{{\varvec{k}}}|^2 e^{2\tau |{\varvec{k}}|} \Big )^{\frac{1}{2}} \\\le & {} C_r \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} g\Vert \Vert A^{r} e^{\tau A} h\Vert . \end{aligned}$$

The estimate for \(B_2\) is similar as \(B_1\), and we can get \(B_2 \le C_r \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r} e^{\tau A} g\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert \). For \(B_3\), thanks to the Cauchy–Schwarz inequality, since \(r>2\), we have

$$\begin{aligned} B_3= & {} \sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}} C_r \frac{1}{|j_3|} |{\varvec{j}}'|^{\frac{3}{2}}|{\varvec{k}}|^{r+\frac{1}{2}} |{\varvec{l}}|^{r} e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{k}}|} e^{\tau |{\varvec{l}}|} |{\hat{f}}_{{\varvec{j}}}| |{\hat{g}}_{{\varvec{k}}}| |{\hat{h}}_{{\varvec{l}}}| \\= & {} C_r \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}'\ne 0 \end{array} } \frac{1}{|j_3|}|{\varvec{j}}'|^{\frac{3}{2}} |{\hat{f}}_{{\varvec{j}}}| e^{\tau |{\varvec{j}}|}\\&\sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3 \ne 0 \end{array} } |{\varvec{k}}|^{r+\frac{1}{2}} e^{\tau |{\varvec{k}}|}|{\hat{g}}_{{\varvec{k}}}| |({\varvec{j}}'+{\varvec{k}}',k_3)|^{r}e^{\tau |({\varvec{j}}'+{\varvec{k}}',k_3)|}|{\hat{h}}_{-({\varvec{j}}'+{\varvec{k}}',k_3)}| \\\le & {} C_r \Big (\sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}'\ne 0 \end{array} } \frac{1}{|j_3|^2}|{\varvec{j}}'|^{2-2r} \Big )^{\frac{1}{2}} \Big (\sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}'\ne 0 \end{array} } |{\varvec{j}}|^{2r+1} |{\hat{f}}_{{\varvec{j}}}|^2 e^{2\tau |{\varvec{j}}|} \Big )^{\frac{1}{2}}\\&\Big ( \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array} } |{\varvec{k}}|^{2r+1} e^{2\tau |{\varvec{k}}|} |{\hat{g}}_{{\varvec{k}}}|^2\Big )^{\frac{1}{2}} \\&\times \sup \limits _{{\varvec{j}}\in {\mathbb {Z}}^3} \Big ( \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array}} |({\varvec{j}}'+{\varvec{k}}',k_3)|^{2r}e^{2\tau |({\varvec{j}}'+{\varvec{k}}',k_3)|}|{\hat{h}}_{-({\varvec{j}}'+{\varvec{k}}',k_3)}|^2\Big )^{\frac{1}{2}} \\\le & {} C_r \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} g\Vert \Vert A^{r} e^{\tau A} h\Vert . \end{aligned}$$

The estimate for \(B_4\) is similar as \(B_3\), and we can get \(B_4 \le C_r \Vert A^{r} e^{\tau A} f\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} g\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert \). The estimates of \(B_1\) to \(B_4\) indicate that \(I_2\) satisfies the desired inequality.

Now let us estimate on \(I_1\). For \( {\varvec{j}}+{\varvec{k}}+ {\varvec{l}}=0\), by using the inequalities

$$\begin{aligned} |{\varvec{j}}|^{\frac{1}{2}} \le C(|{\varvec{k}}|^{\frac{1}{2}} + |{\varvec{l}}|^{\frac{1}{2}}), \;\;\; |{\varvec{k}}|^{\frac{1}{2}} \le C(|{\varvec{j}}|^{\frac{1}{2}} + |{\varvec{l}}|^{\frac{1}{2}}), \;\;\; |{\varvec{l}}|^r \le C_r (|{\varvec{j}}|^r+|{\varvec{k}}|^r), \end{aligned}$$

we have

$$\begin{aligned} I_1\le & {} \sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}} C_r\frac{1}{|j_3|}|{\varvec{j}}'||k_3||{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}|(|{\varvec{j}}|^r+|{\varvec{k}}|^r)e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{k}}|}|{\varvec{l}}|^r e^{\tau |{\varvec{l}}|}|{\hat{h}}_{{\varvec{l}}}|\\\le & {} \sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}} C_r\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}|(|{\varvec{j}}|^{r+1}|{\varvec{k}}|+|{\varvec{j}}||{\varvec{k}}|^{r+1})e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{k}}|}|{\varvec{l}}|^r e^{\tau |{\varvec{l}}|}|{\hat{h}}_{{\varvec{l}}}| \\\le & {} \sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}} C_r \frac{1}{|j_3|}\Big (|{\varvec{k}}|^{\frac{3}{2}}|{\varvec{j}}|^{r+\frac{1}{2}} |{\varvec{l}}|^{r} + |{\varvec{k}}||{\varvec{j}}|^{r+\frac{1}{2}} |{\varvec{l}}|^{r+\frac{1}{2}} + |{\varvec{j}}|^{\frac{3}{2}}|{\varvec{k}}|^{r+\frac{1}{2}} |{\varvec{l}}|^{r} \\&+ |{\varvec{j}}||{\varvec{k}}|^{r+\frac{1}{2}}|{\varvec{l}}|^{r+\frac{1}{2}} \Big ) e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{k}}|} e^{\tau |{\varvec{l}}|} |{\hat{f}}_{{\varvec{j}}}| |{\hat{g}}_{{\varvec{k}}}| |{\hat{h}}_{{\varvec{l}}}| =: {\widetilde{B}}_1 + {\widetilde{B}}_2 + {\widetilde{B}}_3 + {\widetilde{B}}_4. \end{aligned}$$

Thanks to the Cauchy–Schwarz inequality, since \(r>2\), we have

$$\begin{aligned} {\widetilde{B}}_1= & {} \sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}} C_r \frac{1}{|j_3|} |{\varvec{k}}|^{\frac{3}{2}}|{\varvec{j}}|^{r+\frac{1}{2}} |{\varvec{l}}|^{r} e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{k}}|} e^{\tau |{\varvec{l}}|} |{\hat{f}}_{{\varvec{j}}}| |{\hat{g}}_{{\varvec{k}}}| |{\hat{h}}_{{\varvec{l}}}| \\= & {} C_r \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array} } |{\varvec{k}}|^{\frac{3}{2}} |{\hat{g}}_{{\varvec{k}}}| e^{\tau |{\varvec{k}}|} \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}' \ne 0 \end{array} } \frac{1}{|j_3|} |{\varvec{j}}|^{r+\frac{1}{2}} e^{\tau |{\varvec{j}}|}|{\hat{f}}_{{\varvec{j}}}| |{\varvec{j}}+{\varvec{k}}|^{r}e^{\tau |{\varvec{j}}+{\varvec{k}}|}|{\hat{h}}_{-{\varvec{j}}-{\varvec{k}}}| \\\le & {} C_r \sum \limits _{{\varvec{k}}'\in {\mathbb {Z}}^2} |({\varvec{k}}',\pm 1)|^{1-r} \sum \limits _{k_3\ne 0} |{\varvec{k}}|^{r+\frac{1}{2}} |{\hat{g}}_{{\varvec{k}}}| e^{\tau |{\varvec{k}}|} \Big ( \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ {\varvec{j}}\ne 0 \end{array} } |{\varvec{j}}|^{2r+1} e^{2\tau |{\varvec{j}}|} |{\hat{f}}_{{\varvec{j}}}|^2\Big )^{\frac{1}{2}} \\&\times \Big ( \sum \limits _{j_3\ne 0} \frac{1}{|j_3|^2} \sum \limits _{{\varvec{j}}'\in {\mathbb {Z}}^2 } |({\varvec{j}}'+{\varvec{k}}',j_3+k_3)|^{2r}e^{2\tau |({\varvec{j}}'+{\varvec{k}}',j_3+k_3)|}|{\hat{h}}_{-({\varvec{j}}'+{\varvec{k}}',j_3+k_3)}|^2\Big )^{\frac{1}{2}} \\\le & {} C_r \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \sum \limits _{{\varvec{k}}'\in {\mathbb {Z}}^2} |({\varvec{k}}',\pm 1)|^{1-r} \Big (\sum \limits _{k_3\ne 0} |{\varvec{k}}|^{2r+1} |{\hat{g}}_{{\varvec{k}}}|^2 e^{2\tau |{\varvec{k}}|} \Big )^{\frac{1}{2}} \\&\times \Big ( \sum \limits _{j_3\ne 0} \frac{1}{|j_3|^2} \sum \limits _{k_3\ne 0} \sum \limits _{{\varvec{j}}'\in {\mathbb {Z}}^2 } |({\varvec{j}}'+{\varvec{k}}',j_3+k_3)|^{2r}e^{2\tau |({\varvec{j}}'+{\varvec{k}}',j_3+k_3)|}|{\hat{h}}_{-({\varvec{j}}'+{\varvec{k}}',j_3+k_3)}|^2\Big )^{\frac{1}{2}} \\\le & {} C_r \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r} e^{\tau A} h\Vert \Big (\sum \limits _{{\varvec{k}}'\in {\mathbb {Z}}^2} |({\varvec{k}}',\pm 1)|^{2-2r}\Big )^{\frac{1}{2}} \Big (\sum \limits _{{\varvec{k}}'\in {\mathbb {Z}}^2} \sum \limits _{k_3\ne 0} |{\varvec{k}}|^{2r+1} |{\hat{g}}_{{\varvec{k}}}|^2 e^{2\tau |{\varvec{k}}|} \Big )^{\frac{1}{2}} \\\le & {} C_r \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} g\Vert \Vert A^{r} e^{\tau A} h\Vert , \end{aligned}$$

where in the second inequality, we use Fubini theorem to exchange the order of \(\sum \limits _{j_3\ne 0}\) and \(\sum \limits _{k_3\ne 0}\). The estimate for \({\widetilde{B}}_2\) is similar to \({\widetilde{B}}_1\), and we can get \({\widetilde{B}}_2 \le C_r \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r} e^{\tau A} g\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert \). For \({\widetilde{B}}_3\), thanks to the Cauchy–Schwarz inequality, since \(r>2\), we have

$$\begin{aligned} {\widetilde{B}}_3= & {} \sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}} C_r \frac{1}{|j_3|} |{\varvec{j}}|^{\frac{3}{2}}|{\varvec{k}}|^{r+\frac{1}{2}} |{\varvec{l}}|^{r} e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{k}}|} e^{\tau |{\varvec{l}}|} |{\hat{f}}_{{\varvec{j}}}| |{\hat{g}}_{{\varvec{k}}}| |{\hat{h}}_{{\varvec{l}}}| \\= & {} C_r \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}' \ne 0 \end{array} } \frac{1}{|j_3|}|{\varvec{j}}|^{\frac{3}{2}} e^{\tau |{\varvec{j}}|}|{\hat{f}}_{{\varvec{j}}}| \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array} } |{\varvec{k}}|^{r+\frac{1}{2}} |{\hat{g}}_{{\varvec{k}}}| e^{\tau |{\varvec{k}}|} |{\varvec{j}}+{\varvec{k}}|^{r}e^{\tau |{\varvec{j}}+{\varvec{k}}|}|{\hat{h}}_{-{\varvec{j}}-{\varvec{k}}}| \\\le & {} C_r \Big (\sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}'\ne 0 \end{array} } \frac{1}{|j_3|^2}|{\varvec{j}}'|^{2-2r} \Big )^{\frac{1}{2}}\\&\Big (\sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}'\ne 0 \end{array} } |{\varvec{j}}|^{2r+1} |{\hat{f}}_{{\varvec{j}}}|^2 e^{2\tau |{\varvec{j}}|} \Big )^{\frac{1}{2}} \Big ( \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array} } |{\varvec{k}}|^{2r+1} e^{2\tau |{\varvec{k}}|} |{\hat{g}}_{{\varvec{k}}}|^2\Big )^{\frac{1}{2}} \\&\times \sup \limits _{{\varvec{j}}\in {\mathbb {Z}}^3} \Big ( \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array}} |{\varvec{j}}+{\varvec{k}}|^{2r}e^{2\tau |{\varvec{j}}+{\varvec{k}}|}|{\hat{h}}_{-{\varvec{j}}-{\varvec{k}}}|^2\Big )^{\frac{1}{2}}\\&\le C_r \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} g\Vert \Vert A^{r} e^{\tau A} h\Vert , \end{aligned}$$

where in the first inequality we use \(|{\varvec{j}}|^{2-2r}\le |{\varvec{j}}'|^{2-2r}\) due to \(r>2\). The estimate for \({\widetilde{B}}_4\) is similar as \({\widetilde{B}}_3\), and we can get \({\widetilde{B}}_4 \le C_r \Vert A^{r} e^{\tau A} f\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} g\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert \). The estimates of \({\widetilde{B}}_1\) to \({\widetilde{B}}_4\) indicate that \(I_1\) satisfies the desired inequality. \(\square \)

Lemma A.4A.7 play an essential role in the proof of Theorem 6.1. First, let us state the following:

Lemma A.4

For \(f, g, h\in {\mathcal {D}}(e^{\tau A}: H^{r+\frac{1}{2}})\), where \(r>\frac{5}{2}\) and \(\tau \geqq 0\), one has

$$\begin{aligned}&\Big |\Big \langle A^r e^{\tau A} (f\cdot \nabla g), A^r e^{\tau A} h \Big \rangle - \Big \langle f\cdot \nabla A^r e^{\tau A} g, A^r e^{\tau A} h \Big \rangle \Big | \\&\quad \le C_r \Vert A^r f\Vert \Vert A^{r} g\Vert \Vert A^{r} h\Vert + C_r \tau \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} g\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert . \end{aligned}$$

Lemma A.5

For \(f, g, h\in {\mathcal {D}}(e^{\tau A}: H^{r+\frac{1}{2}})\), where \(r>\frac{5}{2}\) and \(\tau \geqq 0\), one has

$$\begin{aligned}&\Big |\Big \langle A^r e^{\tau A} \big ( (\nabla \cdot f)g\big ), A^r e^{\tau A} h \Big \rangle - \Big \langle (\nabla \cdot A^r e^{\tau A} f)g, A^r e^{\tau A} h \Big \rangle \Big | \\&\quad \le C_r \Vert A^r f\Vert \Vert A^{r} g\Vert \Vert A^{r} h\Vert + C_r \tau \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} g\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert . \end{aligned}$$

The proof of Lemma A.4 is similarly to that of Lemma 8 in [49] since it involves nonlinear term similar to that appearing in the Euler equations. The proof of Lemma A.5 is similarly to that of Lemma A.4. Therefore, they are omitted.

The next two lemmas provide the estimates for nonlinear terms which are specific to the structure of the PEs.

Lemma A.6

For \(f\in {\mathcal {D}}(e^{\tau A}: H^{r+\frac{3}{2}})\) and \(g, h\in {\mathcal {D}}(e^{\tau A}: H^{r+\frac{1}{2}})\), where \(r>\frac{5}{2}\), \(\tau \geqq 0\), and \({\overline{f}} = 0\), one has

$$\begin{aligned}&\Big |\Big \langle A^r e^{\tau A} \Big ( (\int _0^z \nabla \cdot f({\varvec{x}}',s)ds) \partial _z g \Big ), A^r e^{\tau A} h \Big \rangle \\&\quad - \Big \langle (\int _0^z \nabla \cdot f({\varvec{x}}',s)ds)A^r e^{\tau A} \partial _z g , A^r e^{\tau A} h \Big \rangle \Big | \\&\quad \le C_r \Vert A^{r+1} f\Vert \Vert A^{r} g\Vert \Vert A^{r} h\Vert + C_r \tau \Vert A^{r+\frac{3}{2}} e^{\tau A} f\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} g\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert . \end{aligned}$$

Lemma A.7

For \(g\in {\mathcal {D}}(e^{\tau A}: H^{r+\frac{3}{2}})\) and \(f, h\in {\mathcal {D}}(e^{\tau A}: H^{r+\frac{1}{2}})\), where \(r>\frac{5}{2}\), \(\tau \geqq 0\), and \({\overline{f}} = 0\), one has

$$\begin{aligned}&\Big |\Big \langle A^r e^{\tau A} \Big ( (\int _0^z \nabla \cdot f({\varvec{x}}',s)ds) \partial _z g \Big ), A^r e^{\tau A} h \Big \rangle \\&\quad - \Big \langle \partial _z g A^r e^{\tau A} (\int _0^z \nabla \cdot f({\varvec{x}}',s)ds) , A^r e^{\tau A} h \Big \rangle \Big | \\&\quad \le C_r \Vert A^{r+1} g\Vert \Vert A^{r} f\Vert \Vert A^{r} h\Vert + C_r \tau \Vert A^{r+\frac{3}{2}} e^{\tau A} g\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert . \end{aligned}$$

Since the proof of Lemma A.6 is similar to that of Lemma A.7, we first focus below on the proof of Lemma A.7, and later we sketch the proof of Lemma A.6 with emphasis on the main differences.

Proof

(proof of Lemma A.7) First, denote by \(H = A^r e^{\tau A} h\), and let

$$\begin{aligned} I:= & {} \Big |\Big \langle A^r e^{\tau A} \Big ( (\int _0^z \nabla \cdot f({\varvec{x}}',s)ds) \partial _z g \Big ), A^r e^{\tau A} h \Big \rangle \\&- \Big \langle \partial _z g A^r e^{\tau A} (\int _0^z \nabla \cdot f({\varvec{x}}',s)ds) , A^r e^{\tau A} h \Big \rangle \Big | \\= & {} \Big | \Big \langle (\int _0^z \nabla \cdot f({\varvec{x}}',s)ds) \partial _z g, A^r e^{\tau A} H \Big \rangle \\&- \Big \langle \partial _z g A^r e^{\tau A} (\int _0^z \nabla \cdot f({\varvec{x}}',s)ds) , H \Big \rangle \Big |. \end{aligned}$$

Similarly to the proof of Lemma A.3, using Fourier representation of f, since \({\overline{f}}=0\), we have

$$\begin{aligned} \int _0^z \nabla \cdot f({\varvec{x}}',s) ds = \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3 \ne 0 \end{array}} \frac{1}{j_3}{\varvec{j}}'\cdot {\hat{f}}_{{\varvec{j}}} e^{2\pi ( i{\varvec{j}}' \cdot {\varvec{x}}' + ij_3 z)} - \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3 \ne 0 \end{array}} \frac{1}{j_3}{\varvec{j}}'\cdot {\hat{f}}_{{\varvec{j}}} e^{2\pi i{\varvec{j}}'\cdot {\varvec{x}}'}, \end{aligned}$$

where \({\varvec{j}}'=(j_1,j_2)\). Using Fourier representation of g and H, we have

$$\begin{aligned} I\le & {} C \sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}} \frac{1}{|j_3|} |{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}'||{\varvec{k}}| \Big | |{\varvec{l}}|^r e^{\tau |{\varvec{l}}|} - |{\varvec{j}}|^r e^{\tau |{\varvec{j}}|} \Big | \\&+ C \sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}'||{\varvec{k}}| \Big | |{\varvec{l}}|^r e^{\tau |{\varvec{l}}|} - |({\varvec{j}}',0)|^r e^{\tau |({\varvec{j}}',0)|} \Big |{:=} I_1 {+} I_2. \end{aligned}$$

We estimate \(I_2\) first. By virtue of the following observation [49]: For \(r\geqq 1\) and \(\tau \geqq 0\), and for all positive \(\xi ,\eta \in {\mathbb {R}}\), we have

$$\begin{aligned}&|\xi ^r e^{\tau \xi } - \eta ^r e^{\tau \eta }| \le C_r|\xi - \eta |\nonumber \\&\Big ( |\xi - \eta |^{r-1} + \eta ^{r-1} + \tau (|\xi - \eta |^{r} + \eta ^r)e^{\tau |\xi -\eta |}e^{\tau \eta } \Big ); \end{aligned}$$
(A.1)

with \(\xi = |{\varvec{l}}|\), \(\eta = |({\varvec{j}}',0)| = |{\varvec{j}}'|\), and \(|\xi - \eta | = \Big ||{\varvec{l}}|- |({\varvec{j}}',0)| \Big |\le \Big |-{\varvec{l}}-({\varvec{j}}',0)\Big | = |{\varvec{k}}|\), inequality (A.1) implies

$$\begin{aligned}&I_2 \le C_r\sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}'||{\varvec{k}}|^2\nonumber \\&\Big ( |{\varvec{k}}|^{r-1} + |{\varvec{j}}'|^{r-1} + \tau (|{\varvec{k}}|^{r} + |{\varvec{j}}'|^{r})e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|} \Big ). \end{aligned}$$
(A.2)

By the definition of H, and since \(e^x \le 1+xe^x\) for any \(x\geqq 0\), we have

$$\begin{aligned} |{\hat{H}}_{{\varvec{l}}}| = |{\varvec{l}}|^r e^{\tau |{\varvec{l}}|} |{\hat{h}}_{{\varvec{l}}}| \le |{\varvec{l}}|^r(1+\tau |{\varvec{l}}|e^{\tau |{\varvec{l}}|}) |{\hat{h}}_{{\varvec{l}}}| \le |{\varvec{l}}|^r |{\hat{h}}_{{\varvec{l}}}| + \tau (|{\varvec{j}}'|+|{\varvec{k}}|) |{\hat{H}}_{{\varvec{l}}}|. \end{aligned}$$

Therefore, one obtains that

$$\begin{aligned}&|{\hat{H}}_{{\varvec{l}}}| \Big ( |{\varvec{k}}|^{r-1} + |{\varvec{j}}'|^{r-1} + \tau (|{\varvec{k}}|^{r} + |{\varvec{j}}'|^{r})e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|} \Big ) \\&\quad \le \Big (|{\varvec{l}}|^r |{\hat{h}}_{{\varvec{l}}}| + \tau (|{\varvec{j}}'|+|{\varvec{k}}|) |{\hat{H}}_{{\varvec{l}}}|\Big ) \Big ( |{\varvec{k}}|^{r-1} + |{\varvec{j}}'|^{r-1} \Big )\\&+ |{\hat{H}}_{{\varvec{l}}}| \Big (\tau (|{\varvec{k}}|^{r} + |{\varvec{j}}'|^{r})e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|} \Big ) \\&\quad \le |{\hat{h}}_{{\varvec{l}}}| |{\varvec{l}}|^r(|{\varvec{k}}|^{r-1} + |{\varvec{j}}'|^{r-1}) + \tau C_r |{\hat{H}}_{{\varvec{l}}}|(|{\varvec{k}}|^{r} + |{\varvec{j}}'|^{r})e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|}. \end{aligned}$$

Based on this, one has

$$\begin{aligned} I_2\le & {} C_r\sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{h}}_{{\varvec{l}}}| |{\varvec{j}}'||{\varvec{k}}|^2 |{\varvec{l}}|^r(|{\varvec{k}}|^{r-1} + |{\varvec{j}}'|^{r-1}) \\&+ \tau C_r\sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}'||{\varvec{k}}|^2 (|{\varvec{k}}|^{r} + |{\varvec{j}}'|^{r})e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|}:= I_{21} + I_{22}. \end{aligned}$$

Here

$$\begin{aligned} I_{21}= & {} C_r\Big (\sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{h}}_{{\varvec{l}}}| |{\varvec{j}}'||{\varvec{k}}|^{r+1} |{\varvec{l}}|^r + \frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{h}}_{{\varvec{l}}}| |{\varvec{j}}'|^{r}|{\varvec{k}}|^{2} |{\varvec{l}}|^r\Big ) \\:= & {} I_{211}+ I_{212}. \end{aligned}$$

Thanks to the Cauchy–Schwarz inequality, since \(r> \frac{5}{2}\), we have

$$\begin{aligned} I_{211}= & {} C_r \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}'\ne 0 \end{array} } \frac{1}{|j_3|}|{\varvec{j}}'| |{\hat{f}}_{{\varvec{j}}}| \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array} } |{\varvec{k}}|^{r+1} |({\varvec{j}}'+{\varvec{k}}',k_3)|^r |{\hat{g}}_{{\varvec{k}}}||{\hat{h}}_{-({\varvec{j}}'+{\varvec{k}}',k_3)}| \\\le & {} C_r \Big (\sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}'\ne 0 \end{array} } \frac{1}{|j_3|^2}|{\varvec{j}}'|^{2-2r} \Big )^{\frac{1}{2}} \Big (\sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}'\ne 0 \end{array} } |{\varvec{j}}|^{2r} |{\hat{f}}_{{\varvec{j}}}|^2 \Big )^{\frac{1}{2}} \Big ( \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array} } |{\varvec{k}}|^{2r+2} |{\hat{g}}_{{\varvec{k}}}|^2\Big )^{\frac{1}{2}} \\&\times \sup \limits _{{\varvec{j}}\in {\mathbb {Z}}^3} \Big ( \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array}} |({\varvec{j}}'+{\varvec{k}}',k_3)|^{2r}|{\hat{h}}_{-({\varvec{j}}'+{\varvec{k}}',k_3)}|^2\Big )^{\frac{1}{2}}\\&\le C_r \Vert A^r f\Vert \Vert A^{r+1} g\Vert \Vert A^r h \Vert , \text { and } \end{aligned}$$
$$\begin{aligned} I_{212}= & {} C_r \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array} } |{\varvec{k}}|^{2} |{\hat{g}}_{{\varvec{k}}}| \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}' \ne 0 \end{array} } \frac{1}{|j_3|} |{\varvec{j}}'|^{r} |{\hat{f}}_{{\varvec{j}}}| |({\varvec{j}}'+{\varvec{k}}',k_3)|^{r}|{\hat{h}}_{-({\varvec{j}}'+{\varvec{k}}',k_3)}| \\\le & {} C_r \sum \limits _{{\varvec{k}}'\in {\mathbb {Z}}^2} |({\varvec{k}}',\pm 1)|^{1-r} \sum \limits _{k_3\ne 0} |{\varvec{k}}|^{r+1} |{\hat{g}}_{{\varvec{k}}}| \Big ( \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ {\varvec{j}} \ne 0 \end{array} } |{\varvec{j}}|^{2r} |{\hat{f}}_{{\varvec{j}}}|^2\Big )^{\frac{1}{2}} \\&\times \Big ( \sum \limits _{j_3\ne 0} \frac{1}{|j_3|^2} \sum \limits _{{\varvec{j}}'\in {\mathbb {Z}}^2 } |({\varvec{j}}'+{\varvec{k}}',k_3)|^{2r}|{\hat{h}}_{-({\varvec{j}}'+{\varvec{k}}',k_3)}|^2\Big )^{\frac{1}{2}} \nonumber \\\le & {} C_r \Vert A^{r} f\Vert \sum \limits _{{\varvec{k}}'\in {\mathbb {Z}}^2} |({\varvec{k}}',\pm 1)|^{1-r} \Big (\sum \limits _{k_3\ne 0} |{\varvec{k}}|^{2r+2} |{\hat{g}}_{{\varvec{k}}}|^2 \Big )^{\frac{1}{2}} \\&\times \Big ( \sum \limits _{k_3\ne 0} \sum \limits _{{\varvec{j}}'\in {\mathbb {Z}}^2 } |({\varvec{j}}'+{\varvec{k}}',k_3)|^{2r}|{\hat{h}}_{-({\varvec{j}}'+{\varvec{k}}',k_3)}|^2\Big )^{\frac{1}{2}} \\\le & {} C_r \Vert A^r f\Vert \Vert A^r h \Vert \Big (\sum \limits _{{\varvec{k}}'\in {\mathbb {Z}}^2} |({\varvec{k}}',\pm 1)|^{2-2r}\Big )^{\frac{1}{2}} \Big (\sum \limits _{{\varvec{k}}'\in {\mathbb {Z}}^2} \sum \limits _{k_3\ne 0} |{\varvec{k}}|^{2r+2} |{\hat{g}}_{{\varvec{k}}}|^2 \Big )^{\frac{1}{2}}\\\le & {} C_r \Vert A^r f\Vert \Vert A^{r+1} g\Vert \Vert A^r h \Vert . \end{aligned}$$

Next, for \(I_{22}\), we have

$$\begin{aligned} I_{22}= & {} \tau C_r\sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}'||{\varvec{k}}|^{r+2} e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|} \\&+ \tau C_r\sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}'|^{r+1} |{\varvec{k}}|^{2} e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|} \\:= & {} I_{221} + I_{222}. \end{aligned}$$

Noticing that \(|{\varvec{k}}|^{\frac{1}{2}}\le C(|{\varvec{j}}'|^{\frac{1}{2}} + |{\varvec{l}}|^{\frac{1}{2}})\) and \(|{\varvec{j}}'|^{\frac{1}{2}} \le C(|{\varvec{k}}|^{\frac{1}{2}} + |{\varvec{l}}|^{\frac{1}{2}})\), thanks to the Cauchy–Schwarz inequality, since \(r> \frac{5}{2}\), we have

$$\begin{aligned} I_{221}= & {} \tau C_r\sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}'||{\varvec{k}}|^{r+2} e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|} \\\le & {} \tau C_r\sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{h}}_{{\varvec{l}}}| |{\varvec{j}}'| |{\varvec{l}}|^r |{\varvec{k}}|^{r+\frac{3}{2}}(|{\varvec{j}}'|^{\frac{1}{2}}+ |{\varvec{l}}|^{\frac{1}{2}}) e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{l}}|}\\\le & {} \tau C_r\sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{h}}_{{\varvec{l}}}| |{\varvec{j}}'|^{\frac{3}{2}} |{\varvec{l}}|^{r+\frac{1}{2}} |{\varvec{k}}|^{r+\frac{3}{2}} e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{l}}|}\\\le & {} \tau C_r \Big (\sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}'\ne 0 \end{array} } \frac{1}{|j_3|^2}|{\varvec{j}}'|^{2-2r} \Big )^{\frac{1}{2}} \Big (\sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}'\ne 0 \end{array} } |{\varvec{j}}|^{2r+1} e^{2\tau |{\varvec{j}}|} |{\hat{f}}_{{\varvec{j}}}|^2 \Big )^{\frac{1}{2}}\\&\Big ( \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array} } |{\varvec{k}}|^{2r+3} | e^{2\tau |{\varvec{k}}|} {\hat{g}}_{{\varvec{k}}}|^2\Big )^{\frac{1}{2}} \\&\times \sup \limits _{{\varvec{j}}\in {\mathbb {Z}}^3} \Big ( \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array}} |({\varvec{j}}'+{\varvec{k}}',k_3)|^{2r+1} e^{2\tau |({\varvec{j}}'+{\varvec{k}}',k_3)|} |{\hat{h}}_{-({\varvec{j}}'+{\varvec{k}}',k_3)}|^2\Big )^{\frac{1}{2}} \nonumber \\\le & {} \tau C_r \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r+\frac{3}{2}} e^{\tau A} g\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert , \text { and } \end{aligned}$$
$$\begin{aligned} I_{222}= & {} \tau C_r\sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}'|^{r+1}|{\varvec{k}}|^{2} e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|} \\\le & {} \tau C_r\sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{h}}_{{\varvec{l}}}| |{\varvec{j}}'|^{r+\frac{1}{2}}|{\varvec{k}}|^{2}|{{\varvec{l}}}|^r(|{\varvec{k}}|^{\frac{1}{2}}+ |{\varvec{l}}|^{\frac{1}{2}}) e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{l}}|} \\\le & {} \tau C_r\sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{h}}_{{\varvec{l}}}| |{\varvec{j}}'|^{r+\frac{1}{2}}|{\varvec{k}}|^{\frac{5}{2}}|{{\varvec{l}}}|^{r+\frac{1}{2}} e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{l}}|} \\\le & {} \tau C_r \sum \limits _{{\varvec{k}}'\in {\mathbb {Z}}^2} |({\varvec{k}}',\pm 1)|^{1-r} \sum \limits _{k_3\ne 0} |{\varvec{k}}|^{r+\frac{3}{2}} e^{\tau |{\varvec{k}}|} |{\hat{g}}_{{\varvec{k}}}| \Big ( \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ {\varvec{j}} \ne 0 \end{array} } |{\varvec{j}}|^{2r+1} e^{2\tau |{\varvec{j}}|} |{\hat{f}}_{{\varvec{j}}}|^2\Big )^{\frac{1}{2}} \\&\times \Big ( \sum \limits _{j_3\ne 0} \frac{1}{|j_3|^2} \sum \limits _{{\varvec{j}}'\in {\mathbb {Z}}^2 } |({\varvec{j}}'+{\varvec{k}}',k_3)|^{2r+1} e^{2\tau |({\varvec{j}}'+{\varvec{k}}',k_3)|}|{\hat{h}}_{-({\varvec{j}}'+{\varvec{k}}',k_3)}|^2\Big )^{\frac{1}{2}} \\\le & {} \tau C_r \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \sum \limits _{{\varvec{k}}'\in {\mathbb {Z}}^2} |({\varvec{k}}',\pm 1)|^{1-r} \Big (\sum \limits _{k_3\ne 0} |{\varvec{k}}|^{2r+3} e^{2\tau |{\varvec{k}}|} |{\hat{g}}_{{\varvec{k}}}|^2 \Big )^{\frac{1}{2}} \\&\times \Big ( \sum \limits _{k_3\ne 0} \sum \limits _{{\varvec{j}}'\in {\mathbb {Z}}^2 } |({\varvec{j}}'+{\varvec{k}}',k_3)|^{2r+1} e^{2\tau |({\varvec{j}}'+{\varvec{k}}',k_3)|}|{\hat{h}}_{-({\varvec{j}}'+{\varvec{k}}',k_3)}|^2\Big )^{\frac{1}{2}} \\\le & {} \tau C_r \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert \Big (\sum \limits _{{\varvec{k}}'\in {\mathbb {Z}}^2} |({\varvec{k}}',\pm 1)|^{2-2r}\Big )^{\frac{1}{2}}\\&\Big (\sum \limits _{{\varvec{k}}'\in {\mathbb {Z}}^2} \sum \limits _{k_3\ne 0} |{\varvec{k}}|^{2r+3} e^{2\tau |{\varvec{k}}|} |{\hat{g}}_{{\varvec{k}}}|^2 \Big )^{\frac{1}{2}} \\\le & {} \tau C_r \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r+\frac{3}{2}} e^{\tau A} g\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert . \end{aligned}$$

Therefore, \(I_2\) satisfies the desired estimates.

To estimate \(I_1\), we use (A.1) with \(\xi = |{\varvec{l}}|\), \(\eta = |{\varvec{j}}|\), and with \(|\xi - \eta | = \Big ||{\varvec{l}}|- |{\varvec{j}}| \Big |\le |-{\varvec{l}}-{\varvec{j}}| = |{\varvec{k}}|\), to obtain

$$\begin{aligned} I_1 \le C_r \sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}} \frac{1}{|j_3|} |{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}'||{\varvec{k}}|^2 \Big ( |{\varvec{k}}|^{r-1} + |{\varvec{j}}|^{r-1} + \tau (|{\varvec{k}}|^{r} + |{\varvec{j}}|^{r})e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|} \Big ). \end{aligned}$$
(A.3)

Thanks to (A.3), one obtains that

$$\begin{aligned} I_1\le & {} C_r \sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{h}}_{{\varvec{l}}}| |{\varvec{j}}'||{\varvec{k}}|^2 |{\varvec{l}}|^r(|{\varvec{k}}|^{r-1} + |{\varvec{j}}|^{r-1}) \\&+ \tau C_r \sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}'||{\varvec{k}}|^2 (|{\varvec{k}}|^{r} + |{\varvec{j}}|^{r})e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|}:= I_{11} + I_{12}. \end{aligned}$$

Here

$$\begin{aligned} I_{11}\le & {} C_r\Big (\sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{h}}_{{\varvec{l}}}| |{\varvec{j}}||{\varvec{k}}|^{r+1} |{\varvec{l}}|^r + \frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{h}}_{{\varvec{l}}}| |{\varvec{j}}|^{r}|{\varvec{k}}|^{2} |{\varvec{l}}|^r\Big ) \\:= & {} I_{111}+ I_{112}. \end{aligned}$$

Thanks to the Cauchy–Schwarz inequality, since \(r> \frac{5}{2}\), we have

$$\begin{aligned} I_{111}= & {} C_r \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}'\ne 0 \end{array} } \frac{1}{|j_3|}|{\varvec{j}}| |{\hat{f}}_{{\varvec{j}}}| \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array} } |{\varvec{k}}|^{r+1} |{\varvec{j}}+{\varvec{k}}|^r |{\hat{g}}_{{\varvec{k}}}||{\hat{h}}_{-({\varvec{j}}+{\varvec{k}})}|\\\le & {} C_r \Big (\sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}'\ne 0 \end{array} } |{\varvec{j}}|^{2-2r} \Big )^{\frac{1}{2}} \Big (\sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}'\ne 0 \end{array} } |{\varvec{j}}|^{2r} |{\hat{f}}_{{\varvec{j}}}|^2 \Big )^{\frac{1}{2}} \Big ( \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array} } |{\varvec{k}}|^{2r+2} |{\hat{g}}_{{\varvec{k}}}|^2\Big )^{\frac{1}{2}} \\&\times \sup \limits _{{\varvec{j}}\in {\mathbb {Z}}^3} \Big ( \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array}} |{\varvec{j}}+{\varvec{k}}|^{2r}|{\hat{h}}_{-({\varvec{j}}+{\varvec{k}})}|^2\Big )^{\frac{1}{2}} \le C_r \Vert A^r f\Vert \Vert A^{r+1} g\Vert \Vert A^r h \Vert , \text { and } \end{aligned}$$
$$\begin{aligned} I_{112}= & {} C_r \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array} } |{\varvec{k}}|^{2} |{\hat{g}}_{{\varvec{k}}}| \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}' \ne 0 \end{array} } \frac{1}{|j_3|} |{\varvec{j}}|^{r} |{\hat{f}}_{{\varvec{j}}}| |{\varvec{j}}+{\varvec{k}}|^{r}|{\hat{h}}_{-({\varvec{j}}+{\varvec{k}})}| \\\le & {} C_r \Big (\sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ {\varvec{k}} \ne 0 \end{array} } |{\varvec{k}}|^{2-2r} \Big )^{\frac{1}{2}} \Big (\sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ {\varvec{k}} \ne 0 \end{array} } |{\varvec{k}}|^{2r+2} |{\hat{g}}_{{\varvec{k}}}|^2 \Big )^{\frac{1}{2}} \Big ( \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ {\varvec{j}} \ne 0 \end{array} } |{\varvec{j}}|^{2r} |{\hat{f}}_{{\varvec{j}}}|^2\Big )^{\frac{1}{2}} \\&\times \sup \limits _{{\varvec{k}}\in {\mathbb {Z}}^3} \Big ( \sum \limits _{{\varvec{j}}\in {\mathbb {Z}}^3} |{\varvec{j}}+{\varvec{k}}|^{2r}|{\hat{h}}_{-({\varvec{j}}+{\varvec{k}})}|^2\Big )^{\frac{1}{2}} \le C_r \Vert A^r f\Vert \Vert A^{r+1} g\Vert \Vert A^r h \Vert . \end{aligned}$$

Next, for \(I_{12}\), we have

$$\begin{aligned} I_{12}\le & {} \tau C_r\sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}||{\varvec{k}}|^{r+2} e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|} \\&+ \tau C_r\sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}|^{r+1} |{\varvec{k}}|^{2} e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|} := I_{121} + I_{122}. \end{aligned}$$

Since \(|{\varvec{k}}|^{\frac{1}{2}}\le C(|{\varvec{j}}|^{\frac{1}{2}} + |{\varvec{l}}|^{\frac{1}{2}})\) and \(|{\varvec{j}}|^{\frac{1}{2}} \le C(|{\varvec{k}}|^{\frac{1}{2}} + |{\varvec{l}}|^{\frac{1}{2}})\), thanks to the Cauchy–Schwarz inequality, since \(r> \frac{5}{2}\), we have

$$\begin{aligned} I_{121}= & {} \tau C_r\sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}||{\varvec{k}}|^{r+2} e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|} \\\le & {} \tau C_r\sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}', {\varvec{l}} \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{h}}_{{\varvec{l}}}| |{\varvec{j}}| |{\varvec{l}}|^r |{\varvec{k}}|^{r+\frac{3}{2}}(|{\varvec{j}}|^{\frac{1}{2}}+ |{\varvec{l}}|^{\frac{1}{2}}) e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{l}}|}\\\le & {} \tau C_r\sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}' , {\varvec{l}}\ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{h}}_{{\varvec{l}}}| |{\varvec{j}}|^{\frac{3}{2}} |{\varvec{l}}|^{r+\frac{1}{2}} |{\varvec{k}}|^{r+\frac{3}{2}} e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{l}}|}\\\le & {} \tau C_r \Big (\sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}'\ne 0 \end{array} } |{\varvec{j}}|^{2-2r} \Big )^{\frac{1}{2}} \Big (\sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ j_3, {\varvec{j}}'\ne 0 \end{array} } |{\varvec{j}}|^{2r+1} e^{2\tau |{\varvec{j}}|} |{\hat{f}}_{{\varvec{j}}}|^2 \Big )^{\frac{1}{2}} \Big ( \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array} } |{\varvec{k}}|^{2r+3} | e^{2\tau |{\varvec{k}}|} {\hat{g}}_{{\varvec{k}}}|^2\Big )^{\frac{1}{2}} \\&\times \sup \limits _{{\varvec{j}}\in {\mathbb {Z}}^3} \Big ( \sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ k_3\ne 0 \end{array}} |{\varvec{j}}+{\varvec{k}}|^{2r+1} e^{2\tau |{\varvec{j}}+{\varvec{k}}|} |{\hat{h}}_{-({\varvec{j}}+{\varvec{k}})}|^2\Big )^{\frac{1}{2}} \\\le & {} \tau C_r \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r+\frac{3}{2}} e^{\tau A} g\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert , \text { and } \\ I_{122}= & {} \tau C_r\sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}|^{r+1}|{\varvec{k}}|^{2} e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|} \\\le & {} \tau C_r\sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}', {\varvec{l}} \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{h}}_{{\varvec{l}}}| |{\varvec{j}}|^{r+\frac{1}{2}}|{\varvec{k}}|^{2}|{{\varvec{l}}}|^r(|{\varvec{k}}|^{\frac{1}{2}}+ |{\varvec{l}}|^{\frac{1}{2}}) e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{l}}|}\\\le & {} \tau C_r\sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}', {\varvec{l}} \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{h}}_{{\varvec{l}}}| |{\varvec{j}}|^{r+\frac{1}{2}}|{\varvec{k}}|^{\frac{5}{2}}|{{\varvec{l}}}|^{r+\frac{1}{2}} e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|}e^{\tau |{\varvec{l}}|}\\\le & {} \tau C_r \Big (\sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ {\varvec{k}} \ne 0 \end{array} } |{\varvec{k}}|^{2-2r}\Big )^{\frac{1}{2}} \Big (\sum \limits _{\begin{array}{c} {\varvec{k}}\in {\mathbb {Z}}^3 \\ {\varvec{k}} \ne 0 \end{array} } |{\varvec{k}}|^{2r+3} e^{2\tau |{\varvec{k}}|} |{\hat{g}}_{{\varvec{k}}}|^2\Big )^{\frac{1}{2}} \Big ( \sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ {\varvec{j}} \ne 0 \end{array} } |{\varvec{j}}|^{2r+1} e^{2\tau |{\varvec{j}}|} |{\hat{f}}_{{\varvec{j}}}|^2\Big )^{\frac{1}{2}} \\&\times \sup \limits _{{\varvec{k}}\in {\mathbb {Z}}^3}\Big (\sum \limits _{\begin{array}{c} {\varvec{j}}\in {\mathbb {Z}}^3 \\ {\varvec{j}} \ne 0 \end{array} } |{\varvec{j}}+{\varvec{k}}|^{2r+1} e^{2\tau |{\varvec{j}}+{\varvec{k}}|}|{\hat{h}}_{-({\varvec{j}}+{\varvec{k}})}|^2\Big )^{\frac{1}{2}} \\\le & {} \tau C_r \Vert A^{r+\frac{1}{2}} e^{\tau A} f\Vert \Vert A^{r+\frac{3}{2}} e^{\tau A} g\Vert \Vert A^{r+\frac{1}{2}} e^{\tau A} h\Vert . \end{aligned}$$

Therefore, \(I_1\) satisfies the desired estimates. The proof is completed. \(\square \)

Finally, we sketch the proof of Lemma A.6.

Proof

(proof of Lemma A.6) Similar to the proof of Lemma A.7, we have

$$\begin{aligned} I:= & {} \Big |\Big \langle A^r e^{\tau A} \Big ( (\int _0^z \nabla \cdot f({\varvec{x}}',s)ds) \partial _z g \Big ), A^r e^{\tau A} h \Big \rangle \\&- \Big \langle (\int _0^z \nabla \cdot f({\varvec{x}}',s)ds)A^r e^{\tau A} \partial _z g , A^r e^{\tau A} h \Big \rangle \Big | \\= & {} \Big | \Big \langle (\int _0^z \nabla \cdot f({\varvec{x}}',s)ds) \partial _z g, A^r e^{\tau A} H \Big \rangle - \Big \langle (\int _0^z \nabla \cdot f({\varvec{x}}',s)ds)A^r e^{\tau A} \partial _z g , H \Big \rangle \Big |. \\\le & {} C \sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}} \frac{1}{|j_3|} |{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}'||{\varvec{k}}| \Big | |{\varvec{l}}|^r e^{\tau |{\varvec{l}}|} - |{\varvec{k}}|^r e^{\tau |{\varvec{k}}|} \Big | \\&+ C \sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}'||{\varvec{k}}| \Big | |{\varvec{l}}|^r e^{\tau |{\varvec{l}}|} - |{\varvec{k}}|^r e^{\tau |{\varvec{k}}|} \Big |:= I_1 + I_2. \end{aligned}$$

For \(I_1\), since \({\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\), we use (A.1) with \(\xi = |{\varvec{l}}|\), \(\eta = |{\varvec{k}}|\) and \(|\xi - \eta | = \Big ||{\varvec{l}}|- |{\varvec{k}}| \Big |\le \Big |-{\varvec{l}}-{\varvec{k}}\Big | = |{\varvec{j}}|\), to conclude

$$\begin{aligned}&I_1 \le C_r \sum \limits _{\begin{array}{c} {\varvec{j}}+{\varvec{k}}+{\varvec{l}}=0\\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}} \frac{1}{|j_3|} |{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}'||{\varvec{j}}||{\varvec{k}}|\nonumber \\&\Big ( |{\varvec{k}}|^{r-1} + |{\varvec{j}}|^{r-1} + \tau (|{\varvec{k}}|^{r} + |{\varvec{j}}|^{r})e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|} \Big ). \end{aligned}$$
(A.4)

For \(I_2\), since \(({\varvec{j}}',0)+{\varvec{k}}+{\varvec{l}}=0\), we use (A.1) with \(\xi = |{\varvec{l}}|\), \(\eta = |{\varvec{k}}|\) and \(|\xi - \eta | = \Big ||{\varvec{l}}|- |{\varvec{k}}| \Big |\le \Big |-{\varvec{l}}-{\varvec{k}}\Big | = |{\varvec{j}}'|\), to obtain

$$\begin{aligned}&I_2 \le C_r\sum \limits _{\begin{array}{c} {\varvec{j}}'+{\varvec{k}}'+{\varvec{l}}'=0\\ k_3+l_3 = 0 \\ j_3, k_3, {\varvec{j}}' \ne 0 \end{array}}\frac{1}{|j_3|}|{\hat{f}}_{{\varvec{j}}}||{\hat{g}}_{{\varvec{k}}}||{\hat{H}}_{{\varvec{l}}}| |{\varvec{j}}'|^2|{\varvec{k}}|\nonumber \\&\Big ( |{\varvec{k}}|^{r-1} + |{\varvec{j}}'|^{r-1} + \tau (|{\varvec{k}}|^{r} + |{\varvec{j}}'|^{r})e^{\tau |{\varvec{k}}|}e^{\tau |{\varvec{j}}|} \Big ). \end{aligned}$$
(A.5)

Observe that the difference between the sums in the right-hand sides of (A.4) and (A.3) is manifested in the factors \(|{\varvec{j}}'||{\varvec{j}}||{\varvec{k}}|\) and \(|{\varvec{j}}'||{\varvec{k}}|^2\), and between (A.5) and (A.2) is manifested in the factors \(|{\varvec{j}}'|^2|{\varvec{k}}|\) and \(|{\varvec{j}}'||{\varvec{k}}|^2\). Therefore, one can follow the estimates of \(I_1\) in (A.3) and \(I_2\) in (A.2), and obtain that \(I_1\) in (A.4) and \(I_2\) in (A.5) satisfy the desired bound in Lemma A.6. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoul, T.E., Ibrahim, S., Lin, Q. et al. On the Effect of Rotation on the Life-Span of Analytic Solutions to the 3D Inviscid Primitive Equations. Arch Rational Mech Anal 243, 747–806 (2022). https://doi.org/10.1007/s00205-021-01748-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01748-y

Navigation