Skip to main content
Log in

Mean-Field Convergence of Point Vortices to the Incompressible Euler Equation with Vorticity in \(L^\infty \)

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the classical point vortex model in the mean-field scaling regime, in which the velocity field experienced by a single point vortex is proportional to the average of the velocity fields generated by the remaining point vortices. We show that if at some time the associated sequence of empirical measures converges in a renormalized \({\dot{H}}^{-1}\) sense to a probability measure with density \(\omega ^0\in L^\infty ({\mathbb {R}}^2)\) and having finite energy as the number of point vortices \(N\rightarrow \infty \), then the sequence converges in the weak-* topology for measures to the unique solution \(\omega \) of the 2D incompressible Euler equation with initial datum \(\omega ^0\), locally uniformly in time. In contrast to previous results Schochet (Commun Pure Appl Math 49:911–965, 1996), Jabin and Wang (Invent Math 214:523–591, 2018), Serfaty (Duke Math J 169:2887–2935, 2020), our theorem requires no regularity assumptions on the limiting vorticity \(\omega \), is at the level of conservation laws for the 2D Euler equation, and provides a quantitative rate of convergence. Our proof is based on a combination of the modulated-energy method of Serfaty (J Am Math Soc 30:713–768, 2017) and a novel mollification argument. We contend that our result is a mean-field convergence analogue of the famous theorem of Yudovich (USSR Comput Math Math Phys 3:1407–1456, 1963) for global well-posedness of 2D Euler with vorticity in the scaling-critical function space \(L^\infty ({\mathbb {R}}^2)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Even if \(\omega \) is compactly supported, the velocity field u need not be Lipschitz.

  2. See [2] for an example, and see [32] and references therein for more discussion on this point.

  3. See Definition 2.21 for the notion of weak solution intended here.

  4. As is perhaps well-known, the mean-field limit of the Lieb-Liniger model is the one-dimensional cubic nonlinear Schrödinger equation.

  5. As is standard notation, a dot superscript indicates a homogeneous semi-norm for a function space in this paper.

  6. The Banach space \((B_{2,\infty }^{-1}({\mathbb {R}}^2),\Vert \cdot \Vert _{B_{2,\infty }^{-1}({\mathbb {R}}^2)})\) is isomorphic to the dual of the Banach space \((B_{2,1}^{1}({\mathbb {R}}^2),\Vert \cdot \Vert _{B_{2,1}^1({\mathbb {R}}^2)})\).

  7. We note that the truncation parameter \({\underline{\eta }}_N\) is allowed to vary in i. This was an important new contribution from [53], which we shall also make use of in our work.

  8. This inequality is precisely where we use that \(v_{\epsilon _2}\) is Lipschitz.

References

  1. Ambrosio, L., Serfaty, S.: A gradient flow approach to an evolution problem arising in superconductivity. Commun. Pure Appl. Math. 61, 1495–1539, 2008

    Article  MathSciNet  Google Scholar 

  2. Bahouri, H., Chemin, J.-Y.: Équations de transport relatives á des champs de vecteurs non-lipschitziens et mécanique des fluides. Arch. Rational Mech. Anal. 127, 159–181, 1994

    Article  ADS  MathSciNet  Google Scholar 

  3. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations, vol. 343. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg (2011)

  4. Brenier, Y.: Convergence of the Vlasov–Poisson system to the incompressible Euler equations. Commun. Partial Differ. Equ. 25, 737–754, 2000

    Article  MathSciNet  Google Scholar 

  5. Bresch, D., Jabin, P.-E., Wang, Z.:, Modulated free energy and mean field limit, Séminaire Laurent Schwartz-EDP et applications, pp. 1–22, 2019

  6. Bresch, D., Jabin, P.-E., Wang, Z.: On mean-field limits and quantitative estimates with a large class of singular kernels: application to the Patlak–Keller–Segel model. C. R. Math. Acad. Sci. Paris 357, 708–720, 2019

    Article  MathSciNet  Google Scholar 

  7. Bresch, D., Jabin, P.-E., Wang, Z.: Mean-field limit and quantitative estimates with singular attractive kernels, arXiv preprint arXiv:2011.08022, 2020

  8. Brzeźniak, Z. a., Flandoli, F., Maurelli, M.: Existence and uniqueness for stochastic 2D Euler flows with bounded vorticity, Arch. Ration. Mech. Anal., 221 , pp. 107–142, 2016

  9. Chapman, S.J., Rubinstein, J., Schatzman, M.: A mean-field model of superconducting vortices. Eur. J. Appl. Math. 7, 97–111, 1996

    Article  MathSciNet  Google Scholar 

  10. Cheskidov, A., Filho, M.C.L., Lopes, H.J.N., Shvydkoy, R.: Energy conservation in two-dimensional incompressible ideal fluids. Commun. Math. Phys. 348, 129–143, 2016

    Article  ADS  MathSciNet  Google Scholar 

  11. Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70, 167–179, 1979

    Article  ADS  MathSciNet  Google Scholar 

  12. Delort, J.-M.: Existence de nappes de tourbillon en dimension deux. J. Am. Math. Soc. 4, 553–586, 1991

    Article  MathSciNet  Google Scholar 

  13. DiPerna, R.J.: Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J. 28, 137–188, 1979

    Article  MathSciNet  Google Scholar 

  14. Du, Q., Zhang, P.: Existence of weak solutions to some vortex density models. SIAM J. Math. Anal. 34, 1279–1299, 2003

    Article  MathSciNet  Google Scholar 

  15. Duerinckx, M.: Mean-field limits for some Riesz interaction gradient flows. SIAM J. Math. Anal. 48, 2269–2300, 2016

    Article  MathSciNet  Google Scholar 

  16. Duerinckx, M.: Topics in the mathematics of disordered media, PhD thesis, Université Pierre et Marie Curie-Paris VI, 2017

  17. E, W.: Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Phys. D, 77 , pp. 383–404, 1994

  18. Flandoli, F., Gubinelli, M., Priola, E.: Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations. Stoch. Process. Appl. 121, 1445–1463, 2011

    Article  MathSciNet  Google Scholar 

  19. Fournier, N., Hauray, M., Mischler, S.: Propagation of chaos for the 2D viscous vortex model. J. Eur. Math. Soc. (JEMS) 16, 1423–1466, 2014

    Article  MathSciNet  Google Scholar 

  20. F. Golse, On the dynamics of large particle systems in the mean field limit, in Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity, vol. 3 of Lect. Notes Appl. Math. Mech., Springer, [Cham], 2016, pp. 1–144.

  21. Goodman, J., Hou, T.Y.: New stability estimates for the \(2\)-D vortex method. Commun. Pure Appl. Math. 44, 1015–1031, 1991

    Article  MathSciNet  Google Scholar 

  22. Goodman, J., Hou, T.Y., Lowengrub, J.: Convergence of the point vortex method for the \(2\)-D Euler equations. Commun. Pure Appl. Math. 43, 415–430, 1990

    Article  MathSciNet  Google Scholar 

  23. Grafakos, L.: Classical Fourier Analysis, no. 249 in Graduate Texts in Mathematics, Springer, third ed., 2014

  24. Grafakos, L.: Modern Fourier Analysis, no. 250 in Graduate Texts in Mathematics, 3rd edn. Springer, 2014

  25. Hauray, M.: Wasserstein distances for vortices approximation of Euler-type equations. Math. Models Methods Appl. Sci. 19, 1357–1384, 2009

    Article  MathSciNet  Google Scholar 

  26. Hauray, M., Mischler, S.: On Kac’s chaos and related problems. J. Funct. Anal. 266, 6055–6157, 2014

    Article  MathSciNet  Google Scholar 

  27. Helmholtz, H.: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J. Reine Angew. Math. 55, 25–55, 1858

    MathSciNet  Google Scholar 

  28. Jabin, P.-E.: A review of the mean field limits for Vlasov equations. Kinet. Relat. Models 7, 661–711, 2014

    Article  MathSciNet  Google Scholar 

  29. Jabin, P.-E., Wang, Z.: Mean field limit and propagation of chaos for Vlasov systems with bounded forces. J. Funct. Anal. 271, 3588–3627, 2016

    Article  MathSciNet  Google Scholar 

  30. Jabin, P.-E., Wang, Z.: Quantitative estimates of propagation of chaos for stochastic systems with \(W^{-1,\infty }\) kernels. Invent. Math. 214, 523–591, 2018

    Article  ADS  MathSciNet  Google Scholar 

  31. Kirchoff, G.: Vorlesungen Ueber Math. Phys, Teuber (1876)

  32. Kiselev, A., Šverák, V.: Small scale creation for solutions of the incompressible two-dimensional Euler equation. Ann. Math. 180, 1205–1220, 2014

    Article  MathSciNet  Google Scholar 

  33. Lin, F., Zhang, P.: On the hydrodynamic limit of Ginzburg–Landau vortices. Discret. Contin. Dyn. Syst. 6, 121–142, 2000

    Article  MathSciNet  Google Scholar 

  34. Liu, J.-G., Xin, Z.: Convergence of the point vortex method for 2-D vortex sheet. Math. Comp. 70, 595–606, 2001

    Article  ADS  MathSciNet  Google Scholar 

  35. Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow, vol. 27. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

  36. Marchioro, C., Pulvirenti, M.: Vortex methods in two-dimensional fluid dynamics, in Vortex Methods in Two-Dimensional Fluid Dynamics, vol. 203, 1984

  37. Marchioro, C., Pulvirenti, M.: Mathematical theory of incompressible nonviscous fluids, vol. 96, Springer Science & Business Media, 2012

  38. Masmoudi, N., Zhang, P.: Global solutions to vortex density equations arising from sup-conductivity. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 441–458, 2005

    Article  ADS  MathSciNet  Google Scholar 

  39. Newton, P. K.: The\(N\)-vortex problem, vol. 145 of Applied Mathematical Sciences. Springer, New York, 2001. Analytical techniques.

  40. Osada, H.: Propagation of chaos for the two-dimensional Navier–Stokes equation. Proc. Jpn. Acad. Ser. A Math. Sci. 62, 8–11, 1986

    Article  MathSciNet  Google Scholar 

  41. Osada, H.: Limit points of empirical distributions of vortices with small viscosity, in Hydrodynamic behavior and interacting particle systems (Minneapolis, Minn.,: vol. 9 of IMA Vol. Math. Appl. Springer, New York1987, 117–126, 1986

  42. Osada, H., Propagation of chaos for the two-dimensional Navier-Stokes equation, in Probabilistic methods in mathematical physics (Katata, Kyoto: Academic Press. Boston, MA 1987, 303–334, 1985

  43. Petrache, M., Serfaty, S.: Next order asymptotics and renormalized energy for Riesz interactions. J. Inst. Math. Jussieu 16, 501–569, 2017

    Article  MathSciNet  Google Scholar 

  44. Rosenhead, L.: The formation of vortices from a surface of discontinuity, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 134 , pp. 170–192.1931

  45. Rosenzweig, M.: The mean-field limit of the Lieb-Liniger model, arXiv preprint arXiv:1912.07585, 2019

  46. Rosenzweig, M.: Justification of the point vortex approximation for modified surface quasi-geostrophic equations. SIAM J. Math. Anal. 52, 1690–1728, 2020

    Article  MathSciNet  Google Scholar 

  47. Rosenzweig, M.: The mean-field limit of stochastic point vortex systems with multiplicative noise, arXiv preprint arXiv:2011.12180, 2020

  48. Rougerie, N., Serfaty, S.: Higher-dimensional Coulomb gases and renormalized energy functionals. Commun. Pure Appl. Math. 69, 519–605, 2016

    Article  MathSciNet  Google Scholar 

  49. Saint-Raymond, L.: Hydrodynamic limits of the Boltzmann equation, vol. 1971. Lecture Notes in Mathematics. Springer, Berlin (2009)

  50. Schochet, S.: The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation. Commun. Partial Differ. Equ. 20, 1077–1104, 1995

    Article  MathSciNet  Google Scholar 

  51. Schochet, S.: The point-vortex method for periodic weak solutions of the 2-d Euler equations. Commun. Pure Appl. Math. 49, 911–965, 1996

    Article  MathSciNet  Google Scholar 

  52. Serfaty, S.: Mean field limits of the Gross–Pitaevskii and parabolic Ginzburg–Landau equations. J. Amer. Math. Soc. 30, 713–768, 2017

    Article  MathSciNet  Google Scholar 

  53. Serfaty, S.: Mean field limit for coulomb-type flows, Duke Math. J., 169 (2020), pp. 2887–2935. Appendix with Mitia Duerinckx

  54. Serfaty, S., Vázquez, J.L.: A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators. Calc. Var. Partial Differ. Equ. 49, 1091–1120, 2014

    Article  MathSciNet  Google Scholar 

  55. Stein, E. M.: Singular Integrals and Differentiability Properties of Functions, vol. 2, Princeton University Press, 1970

  56. Stein, E. M., Murphy, T. S.: Harmonic Analysis (PMS-43): Real-Variable Methods, Orthogonality, and Oscillatory Integrals. (PMS-43), Princeton University Press, 1993

  57. Westwater, F.: Rolling up of the surface of discontinuity behind an aerofoil of finite span, HM Stationery Office, 1935

  58. Wolibner, W.: Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long. Math. Z. 37, 698–726, 1933

    Article  MathSciNet  Google Scholar 

  59. Yau, H.-T.: Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys. 22, 63–80, 1991

    Article  ADS  MathSciNet  Google Scholar 

  60. Yudovich, V.: Non-stationary flow of an ideal incompressible liquid. USSR Comput. Math. Math. Phys. 3, 1407–1456, 1963

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Nataša Pavlović for helpful comments on an earlier draft of the manuscript, as well as Sylvia Serfaty for her feedback, which has improved the discussion in Sect. 1.2 and corrected an earlier misattribution, and Fang-Hua Lin for helpful information concerning references. The author also thanks the anonymous reviewers for their suggestions for improving the exposition. The author acknowledges financial support from the Simons Foundation and from The University of Texas at Austin through a Provost Graduate Excellence Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Rosenzweig.

Additional information

Communicated by V. Vicol.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenzweig, M. Mean-Field Convergence of Point Vortices to the Incompressible Euler Equation with Vorticity in \(L^\infty \). Arch Rational Mech Anal 243, 1361–1431 (2022). https://doi.org/10.1007/s00205-021-01735-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01735-3

Navigation