Skip to main content
Log in

Infinite-Dimensional Inverse Problems with Finite Measurements

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We present a general framework to study uniqueness, stability and reconstruction for infinite-dimensional inverse problems when only a finite-dimensional approximation of the measurements is available. For a large class of inverse problems satisfying Lipschitz stability we show that the same estimate holds even with a finite number of measurements. We also derive a globally convergent reconstruction algorithm based on the Landweber iteration. This theory applies to nonlinear ill-posed problems such as electrical impedance tomography (EIT), inverse scattering and quantitative photoacoustic tomography (QPAT), under the assumption that the unknown belongs to a finite-dimensional subspace. In particular, we derive Lipschitz stability estimates for EIT with a matrix approximation of the Neumann-to-Dirichlet map; for the inverse scattering problem with measurements of the scattering amplitude at a finite number of directions on \(S^2 \times S^2\); and for QPAT with a low-pass filter of the internal energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. After the first version of this preprint was published, several works on this topic have appeared [7, 10, 63].

References

  1. Adcock, B., Hansen, A.C.: A generalized sampling theorem for stable reconstructions in arbitrary bases. J. Fourier Anal. Appl. 18(4), 685–716, 2012. https://doi.org/10.1007/s00041-012-9221-x.

    Article  MathSciNet  MATH  Google Scholar 

  2. Adcock, B., Hansen, A.C.: Generalized sampling and infinite-dimensional compressed sensing. Found. Comput. Math. 16(5), 1263–1323, 2016

    Article  MathSciNet  Google Scholar 

  3. Adcock, B., Hansen, A.C., Poon, C.: Beyond consistent reconstructions: optimality and sharp bounds for generalized sampling, and application to the uniform resampling problem. SIAM J. Math. Anal. 45(5), 3132–3167, 2013. https://doi.org/10.1137/120895846.

    Article  MathSciNet  MATH  Google Scholar 

  4. Adcock, B., Hansen, A.C., Poon, C., Roman, B.: Breaking the coherence barrier: a new theory for compressed sensing. Forum Math. Sigma, 2017. https://doi.org/10.1017/fms.2016.32.

    Article  MathSciNet  MATH  Google Scholar 

  5. Adler, J., Öktem, O.: Solving ill-posed inverse problems using iterative deep neural networks. Inverse Probl. 33(12), 124007, 2017

    Article  ADS  MathSciNet  Google Scholar 

  6. Adler, J., Öktem, O.: Learned primal-dual reconstruction. IEEE Trans. Med. Imaging 37(6), 1322–1332, 2018

    Article  Google Scholar 

  7. Alberti, G.S., Arroyo, Á., Santacesaria, M.: Inverse problems on low-dimensional manifolds. arXiv preprint arXiv:2009.00574 (2020)

  8. Alberti, G.S., Capdeboscq, Y.: Lectures on elliptic methods for hybrid inverse problems, Cours Spécialisés [Specialized Courses], vol. 25. Société Mathématique de France, Paris (2018)

    MATH  Google Scholar 

  9. Alberti, G.S., Santacesaria, M.: Calderón’s inverse problem with a finite number of measurements. Forum Math. Sigma, 2019. https://doi.org/10.1017/fms.2019.31.

  10. Alberti, G.S., Santacesaria, M.: Calderón’s inverse problem with a finite number of measurements II: independent data. Appl. Anal., 2020

  11. Alberti, G.S., Santacesaria, M.: Infinite dimensional compressed sensing from anisotropic measurements and applications to inverse problems in PDE. Appl. Comput. Harmon. Anal. 50, 105–146, 2021. https://doi.org/10.1016/j.acha.2019.08.002.

    Article  MathSciNet  MATH  Google Scholar 

  12. Alessandrini, G.: Stable determination of conductivity by boundary measurements. Appl. Anal. 27(1–3), 153–172, 1988

    Article  MathSciNet  Google Scholar 

  13. Alessandrini, G., Beretta, E., Vessella, S.: Determining linear cracks by boundary measurements: Lipschitz stability. SIAM J. Math. Anal. 27(2), 361–375, 1996. https://doi.org/10.1137/S0036141094265791.

    Article  MathSciNet  MATH  Google Scholar 

  14. Alessandrini, G., De Hoop, M.V., Gaburro, R.: Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities. Inverse Probl. 33(12), 125013, 2017

    Article  ADS  MathSciNet  Google Scholar 

  15. Alessandrini, G., de Hoop, M.V., Gaburro, R., Sincich, E.: Lipschitz stability for the electrostatic inverse boundary value problem with piecewise linear conductivities. J. Math. Pures Appl. (9) 107(5), 638–664, 2017

    Article  MathSciNet  Google Scholar 

  16. Alessandrini, G., de Hoop, M.V., Gaburro, R., Sincich, E.: Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data. Asymptot. Anal. 108(3), 115–149, 2018. https://doi.org/10.3233/asy-171457.

    Article  MathSciNet  MATH  Google Scholar 

  17. Alessandrini, G., Rondi, L.: Determining a sound-soft polyhedral scatterer by a single far-field measurement. Proc. Am. Math. Soc. 133(6), 1685–1691, 2005

    Article  MathSciNet  Google Scholar 

  18. Alessandrini, G., Vessella, S.: Lipschitz stability for the inverse conductivity problem. Adv. Appl. Math. 35(2), 207–241, 2005. https://doi.org/10.1016/j.aam.2004.12.002.

    Article  MathSciNet  MATH  Google Scholar 

  19. Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Mathematics, vol. 34. Cambridge University Press, Cambridge (1995). Corrected reprint of the 1993 original.

  20. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404, 1950. https://doi.org/10.2307/1990404.

    Article  MathSciNet  MATH  Google Scholar 

  21. Arridge, S., Maass, P., Öktem, O., Schönlieb, C.B.: Solving inverse problems using data-driven models. Acta Numer. 28, 1–174, 2019. https://doi.org/10.1017/S0962492919000059.

    Article  MathSciNet  MATH  Google Scholar 

  22. Astala, K., Päivärinta, L.: Calderóns inverse conductivity problem in the plane. Ann. Math. 163, 265–299, 2006

    Article  MathSciNet  Google Scholar 

  23. Bacchelli, V., Vessella, S.: Lipschitz stability for a stationary 2D inverse problem with unknown polygonal boundary. Inverse Probl. 22(5), 1627, 2006

    Article  ADS  MathSciNet  Google Scholar 

  24. Bal, G.: Hybrid inverse problems and internal functionals. In: Inverse problems and applications: inside out. II, Math. Sci. Res. Inst. Publ., vol. 60, pp. 325–368. Cambridge Univ. Press, Cambridge (2013)

  25. Bal, G., Jollivet, A., Jugnon, V.: Inverse transport theory of photoacoustics. Inverse Probl. 26(2), 025011, 2010. https://doi.org/10.1088/0266-5611/26/2/025011.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Bal, G., Ren, K.: Multi-source quantitative photoacoustic tomography in a diffusive regime. Inverse Probl. 27(7), 075003, 2011. https://doi.org/10.1088/0266-5611.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Bal, G., Uhlmann, G.: Inverse diffusion theory of photoacoustics. Inverse Probl. 26(8), 085010, 2010

    Article  ADS  MathSciNet  Google Scholar 

  28. Bao, G., Zhang, H., Zou, J.: Unique determination of periodic polyhedral structures by scattered electromagnetic fields. Trans. Am. Math. Soc. 363(9), 4527–4551, 2011

    Article  MathSciNet  Google Scholar 

  29. Barceló, J.A., Luque, T., Pérez-Esteva, S.: Characterization of Sobolev spaces on the sphere. J. Math. Anal. Appl. 491(1), 124240, 2020. https://doi.org/10.1016/j.jmaa.2020.124240.

    Article  MathSciNet  MATH  Google Scholar 

  30. Bellassoued, M., Jellali, D., Yamamoto, M.: Lipschitz stability for a hyperbolic inverse problem by finite local boundary data. Appl. Anal. 85(10), 1219–1243, 2006. https://doi.org/10.1080/00036810600787873.

    Article  MathSciNet  MATH  Google Scholar 

  31. Beretta, E., Francini, E.: Lipschitz stability for the electrical impedance tomography problem: the complex case. Commun. Partial Differ. Equ. 36(10), 1723–1749, 2011. https://doi.org/10.1080/03605302.2011.552930.

    Article  MathSciNet  MATH  Google Scholar 

  32. Beretta, E., Francini, E.: Global Lipschitz stability estimates for polygonal conductivity inclusions from boundary measurements. Appl. Anal., 2020. https://doi.org/10.1080/00036811.2020.1775819.

    Article  Google Scholar 

  33. Beretta, E., Francini, E., Morassi, A., Rosset, E., Vessella, S.: Lipschitz continuous dependence of piecewise constant Lamé coefficients from boundary data: the case of non-flat interfaces. Inverse Probl. 30(12), 125005, 2014. https://doi.org/10.1088/0266-5611/30/12/125005.

    Article  ADS  MATH  Google Scholar 

  34. Beretta, E., Francini, E., Vessella, S.: Determination of a linear crack in an elastic body from boundary measurements-Lipschitz stability. SIAM J. Math. Anal. 40(3), 984–1002, 2008. https://doi.org/10.1137/070698397.

    Article  MathSciNet  MATH  Google Scholar 

  35. Beretta, E., Francini, E., Vessella, S.: Uniqueness and Lipschitz stability for the identification of Lamé parameters from boundary measurements. Inverse Probl. Imaging 8, 611, 2014. https://doi.org/10.3934/ipi.2014.8.611.

    Article  MathSciNet  MATH  Google Scholar 

  36. Beretta, E., de Hoop, M.V., Faucher, F., Scherzer, O.: Inverse boundary value problem for the Helmholtz equation: quantitative conditional Lipschitz stability estimates. SIAM J. Math. Anal. 48(6), 3962–3983, 2016. https://doi.org/10.1137/15M1043856.

    Article  MathSciNet  MATH  Google Scholar 

  37. Beretta, E., de Hoop, M.V., Francini, E., Vessella, S.: Stable determination of polyhedral interfaces from boundary data for the Helmholtz equation. Commun. Partial Differ. Equ. 40(7), 1365–1392, 2015. https://doi.org/10.1080/03605302.2015.1007379.

    Article  MathSciNet  MATH  Google Scholar 

  38. Beretta, E., de Hoop, M.V., Francini, E., Vessella, S., Zhai, J.: Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves. Inverse Probl. 33(3), 035013, 2017. https://doi.org/10.1088/1361-6420/aa5bef.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Beretta, E., de Hoop, M.V., Qiu, L.: Lipschitz stability of an inverse boundary value problem for a Schrödinger-type equation. SIAM J. Math. Anal. 45(2), 679–699, 2013. https://doi.org/10.1137/120869201.

    Article  MathSciNet  MATH  Google Scholar 

  40. Blåsten, E., Liu, H.: On corners scattering stably and stable shape determination by a single far-field pattern. Indiana Univ. Math. J. 70, 907–947, 2019

    Article  MathSciNet  Google Scholar 

  41. Blåsten, E., Liu, H.: Recovering piecewise constant refractive indices by a single far-field pattern. Inverse Probl. 36(8), 085005, 2020. https://doi.org/10.1088/1361-6420/ab958f.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Borcea, L.: Electrical impedance tomography. Inverse Probl. 18(6), R99–R136, 2002. https://doi.org/10.1088/0266-5611/18/6/201.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Bourgeois, L.: A remark on Lipschitz stability for inverse problems. C. R. Math. 351(5–6), 187–190, 2013

    Article  MathSciNet  Google Scholar 

  44. Brauchart, J.S., Dick, J.: A characterization of Sobolev spaces on the sphere and an extension of Stolarskys invariance principle to arbitrary smoothness. Constr. Approx. 38(3), 397–445, 2013. https://doi.org/10.1007/s00365-013-9217-z.

    Article  MathSciNet  MATH  Google Scholar 

  45. Calderón, A.P.: On an inverse boundary value problem. In: Seminar on Numerical Analysis and Its Applications to Continuum Physics (Rio de Janeiro, 1980), pp. 65–73. Soc. Brasil. Mat., Rio de Janeiro (1980)

  46. Caro, P., García, A., Reyes, J.M.: Stability of the Calderón problem for less regular conductivities. J. Differ. Equ. 254(2), 469–492, 2013. https://doi.org/10.1016/j.jde.2012.08.018.

    Article  ADS  MATH  Google Scholar 

  47. Caro, P., Rogers, K.M.: Global uniqueness for the Calderón problem with Lipschitz conductivities. In: Forum of Mathematics, Pi, vol. 4. Cambridge University Press (2016)

  48. Cekić, M., Lin, Y.H., Rüland, A.: The Calderón problem for the fractional Schrödinger equation with drift. Calc. Var. Partial. Differ. Equ. 59, 1–46, 2020

    Article  Google Scholar 

  49. Cheney, M., Isaacson, D., Newell, J.C.: Electrical impedance tomography. SIAM Rev. 41(1), 85–101, 1999. https://doi.org/10.1137/S0036144598333613.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Cheng, J., Nakamura, G.: Stability for the inverse potential problem by finite measurements on the boundary. Inverse Probl. 17(2), 273–280, 2001. https://doi.org/10.1088/0266-5611/17/2/307.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Cheng, J., Yamamoto, M.: Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves. Inverse Probl. 19(6), 1361, 2003

    Article  ADS  MathSciNet  Google Scholar 

  52. Clop, A., Faraco, D., Ruiz, A.: Stability of Calderóns inverse conductivity problem in the plane for discontinuous conductivities. Inverse Probl. Imaging 4(1), 49–91, 2010

    Article  MathSciNet  Google Scholar 

  53. Colton, D., Kress, R.: Inverse Aoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences, vol. 93, 3rd edn. Springer, New York (2013) https://doi.org/10.1007/978-1-4614-4942-3.

    Book  MATH  Google Scholar 

  54. Dashti, M., Harris, S., Stuart, A.: Besov priors for Bayesian inverse problems. Inverse Probl. Imaging 6(2), 183–200, 2012. https://doi.org/10.3934/ipi.2012.6.183.

    Article  MathSciNet  MATH  Google Scholar 

  55. De Vito, E., Mücke, N., Rosasco, L.: Reproducing kernel Hilbert spaces on manifolds: Sobolev and diffusion spaces. Anal. Appl., 2020. https://doi.org/10.1142/S0219530520400114.

    Article  MATH  Google Scholar 

  56. Friedman, A., Isakov, V.: On the uniqueness in the inverse conductivity problem with one measurement. Indiana Univ. Math. J. 38(3), 563–579, 1989

    Article  MathSciNet  Google Scholar 

  57. Gaburro, R., Sincich, E.: Lipschitz stability for the inverse conductivity problem for a conformal class of anisotropic conductivities. Inverse Probl. 31(1), 015008, 2015. https://doi.org/10.1088/0266-5611/31/1/015008.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition.

  59. Grasmair, M., Haltmeier, M., Scherzer, O.: Necessary and sufficient conditions for linear convergence of \(\ell ^1\)-regularization. Commun. Pure Appl. Math. 64(2), 161–182, 2011. https://doi.org/10.1002/cpa.20350.

    Article  MathSciNet  MATH  Google Scholar 

  60. Grasmair, M., Haltmeier, M., Scherzer, O.: The residual method for regularizing ill-posed problems. Appl. Math. Comput. 218(6), 2693–2710, 2011. https://doi.org/10.1016/j.amc.2011.08.009.

    Article  MathSciNet  MATH  Google Scholar 

  61. Haberman, B.: Uniqueness in Calderóns problem for conductivities with unbounded gradient. Commun. Math. Phys. 340(2), 639–659, 2015

    Article  ADS  Google Scholar 

  62. Harrach, B.: Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes. Inverse Probl. 35(2), 024005, 2019. https://doi.org/10.1088/1361-6420/aaf6fc.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Harrach, B.: Uniqueness, stability and global convergence for a discrete inverse elliptic Robin transmission problem. Numer. Math. 147, 29–70, 2020

    Article  MathSciNet  Google Scholar 

  64. Harrach, B., Meftahi, H.: Global uniqueness and Lipschitz-stability for the inverse Robin transmission problem. SIAM J. Appl. Math. 79(2), 525–550, 2019. https://doi.org/10.1137/18M1205388.

    Article  MathSciNet  MATH  Google Scholar 

  65. Hasanov Hasanoğlu, A., Romanov, V.G.: Introduction to Inverse Problems for Differential Equations. Springer, Cham (2017) https://doi.org/10.1007/978-3-319-62797-7.

    Book  MATH  Google Scholar 

  66. de Hoop, M.V., Qiu, L., Scherzer, O.: Local analysis of inverse problems: Hölder stability and iterative reconstruction. Inverse Probl. 28(4), 045001, 2012. https://doi.org/10.1088/0266-5611/28/4/045001.

    Article  ADS  MATH  Google Scholar 

  67. de Hoop, M.V., Qiu, L., Scherzer, O.: An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints. Numer. Math. 129(1), 127–148, 2015. https://doi.org/10.1007/s00211-014-0629-x.

    Article  MathSciNet  MATH  Google Scholar 

  68. Hu, G., Salo, M., Vesalainen, E.: Shape identification in inverse medium scattering problems with a single far-field pattern. SIAM J. Math. Anal. 48(1), 152–165, 2016. https://doi.org/10.1137/15M1032958.

    Article  MathSciNet  MATH  Google Scholar 

  69. Isakov, V.: Inverse Problems for Partial Differential Equations. Applied Mathematical Sciences, vol. 127, 3rd edn. Springer, Cham (2017) https://doi.org/10.1007/978-3-319-51658-5.

    Book  MATH  Google Scholar 

  70. Kaipio, J., Somersalo, E.: Statistical inverse problems: discretization, model reduction and inverse crimes. J. Comput. Appl. Math. 198(2), 493–504, 2007. https://doi.org/10.1016/j.cam.2005.09.027.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems, Radon Series on Computational and Applied Mathematics, vol. 6. Walter de Gruyter GmbH & Co. KG, Berlin (2008) https://doi.org/10.1515/9783110208276.

    Book  MATH  Google Scholar 

  72. Kekkonen, H., Lassas, M., Siltanen, S.: Analysis of regularized inversion of data corrupted by white Gaussian noise. Inverse Probl. 30(4), 045009, 2014. https://doi.org/10.1088/0266-5611/30/4/045009.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Applied Mathematical Sciences, vol. 120, 2nd edn. Springer, New York (2011) https://doi.org/10.1007/978-1-4419-8474-6.

    Book  MATH  Google Scholar 

  74. Kuchment, P., Kunyansky, L.: Mathematics of photoacoustic and thermoacoustic tomography. In: Handbook of Mathematical Methods in Imaging, vol. 1, 2, 3, pp. 1117–1167. Springer, New York (2015)

  75. Kuchment, P., Steinhauer, D.: Stabilizing inverse problems by internal data. Inverse Probl. 28(8), 084007, 2012

    Article  ADS  MathSciNet  Google Scholar 

  76. Lassas, M., Saksman, E., Siltanen, S.: Discretization-invariant Bayesian inversion and Besov space priors. Inverse Probl. Imaging 3(1), 87–122, 2009. https://doi.org/10.3934/ipi.2009.3.87.

    Article  MathSciNet  MATH  Google Scholar 

  77. Lechleiter, A., Rieder, A.: Newton regularizations for impedance tomography: convergence by local injectivity. Inverse Prob. 24(6), 065009, 2008. https://doi.org/10.1088/0266-5611/24/6/065009.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Li, B.Z., Ji, Q.H.: Sampling analysis in the complex reproducing kernel Hilbert space. Eur. J. Appl. Math. 26(1), 109–120, 2015

    Article  MathSciNet  Google Scholar 

  79. Liu, H., Petrini, M., Rondi, L., Xiao, J.: Stable determination of sound-hard polyhedral scatterers by a minimal number of scattering measurements. J. Differ. Equ. 262(3), 1631–1670, 2017. https://doi.org/10.1016/j.jde.2016.10.021.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Lucas, A., Iliadis, M., Molina, R., Katsaggelos, A.K.: Using deep neural networks for inverse problems in imaging: beyond analytical methods. IEEE Signal Process. Mag. 35(1), 20–36, 2018

    Article  ADS  Google Scholar 

  81. Mairal, J., Bach, F., Ponce, J.: Task-driven dictionary learning. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 791–804, 2011

    Article  Google Scholar 

  82. Mandache, N.: Exponential instability in an inverse problem for the Schrödinger equation. Inverse Probl. 17(5), 1435, 2001

    Article  ADS  MathSciNet  Google Scholar 

  83. McCann, M.T., Jin, K.H., Unser, M.: Convolutional neural networks for inverse problems in imaging: a review. IEEE Signal Process. Mag. 34(6), 85–95, 2017

    Article  ADS  Google Scholar 

  84. Mittal, G., Giri, A.K.: Iteratively regularized Landweber iteration method: convergence analysis via Hölder stability. Appl. Math. Comput. 392, 125744, 2021. https://doi.org/10.1016/j.amc.2020.125744.

    Article  MATH  Google Scholar 

  85. Mueller, J.L., Siltanen, S.: Linear and Nonlinear Inverse Problems with Practical Applications. Computational Science & Engineering, vol. 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2012) https://doi.org/10.1137/1.9781611972344.

    Book  MATH  Google Scholar 

  86. Nachman, A.I.: Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. 143, 71–96, 1996

    Article  MathSciNet  Google Scholar 

  87. Ongie, G., Jalal, A., Metzler, C.A., Baraniuk, R.G., Dimakis, A.G., Willett, R.: Deep learning techniques for inverse problems in imaging. IEEE J. Sel. Areas Inf. Theory 1(1), 39–56, 2020. https://doi.org/10.1109/JSAIT.2020.2991563.

    Article  Google Scholar 

  88. Rondi, L.: A remark on a paper by Alessandrini and Vessella. Adv. Appl. Math. 36(1), 67–69, 2006

    Article  MathSciNet  Google Scholar 

  89. Rüland, A., Sincich, E.: Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data. Inverse Probl. Imaging 13(5), 1023–1044, 2019

    Article  MathSciNet  Google Scholar 

  90. Seidman, T.I.: Nonconvergence results for the application of least-squares estimation to ill-posed problems. J. Optim. Theory Appl. 30(4), 535–547, 1980. https://doi.org/10.1007/BF01686719.

    Article  MathSciNet  MATH  Google Scholar 

  91. Stefanov, P.: Stability of the inverse problem in potential scattering at fixed energy. Ann. Inst. Fourier (Grenoble) 40(4), 867–884, 1990

    Article  MathSciNet  Google Scholar 

  92. Stefanov, P., Uhlmann, G., Vasy, A., Zhou, H.: Travel time tomography. Acta Math. Sin. (Engl. Ser.) 35(6), 1085–1114, 2019. https://doi.org/10.1007/s10114-019-8338-0.

    Article  MathSciNet  MATH  Google Scholar 

  93. Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 125, 153–169, 1987

    Article  MathSciNet  Google Scholar 

  94. Uhlmann, G.: Electrical impedance tomography and Calderóns problem. Inverse Probl. 25(12), 123011, 2009. https://doi.org/10.1088/0266-5611/25/12/123011.

    Article  ADS  MATH  Google Scholar 

  95. Wang, L.V., Hu, S.: Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075), 1458–1462, 2012. https://doi.org/10.1126/science.1216210.

    Article  ADS  Google Scholar 

  96. Yarotsky, D.: Error bounds for approximations with deep ReLU networks. Neural Netw. 94, 103–114, 2017

    Article  Google Scholar 

Download references

Acknowledgements

The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The authors would like to thank Otmar Scherzer for explaining some useful details of [66].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Santacesaria.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by C. Le Bris

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

G.S. Alberti is partially supported by the UniGE starting grant “Curiosity”. M. Santacesaria is partially supported by a INdAM—GNAMPA Project 2019. This material is based upon work supported by the Air Force Office of Scientific Research under award number FA8655-20-1-7027.

Appendix: A Local Convergence of Landweber Iteration

Appendix: A Local Convergence of Landweber Iteration

For the sake of completeness, we describe the convergence result used in Section 3.1. We present a simplified version of [66, Theorem 3.2] that is sufficient for our scopes.

Let X and Y be Hilbert spaces, \(A\subseteq X\) be an open set, \(K\subseteq A\) be a compact set and \(F:A\rightarrow Y\) be such that

  1. 1.

    \(F\in C^1(A,Y)\) and \(F':A\rightarrow {\mathcal {L}}_c(X,Y)\) is Lipschitz continuous, namely

    $$\begin{aligned}&\Vert F'(x_1)-F'(x_2)\Vert _{X\rightarrow Y}\leqq L\Vert x_1-x_2\Vert _X,\qquad x_1,x_2\in A,\\&\Vert F'(x)\Vert _{X\rightarrow Y}\leqq \hat{L},\qquad x\in A, \end{aligned}$$

    for some \(L,\hat{L}>0\);

  2. 2.

    \(F^{-1}\) is Lipschitz continuous, namely

    $$\begin{aligned} \Vert x_1-x_2\Vert _X \leqq C\Vert F(x_1)-F(x_2)\Vert _Y,\qquad x_1,x_2\in A, \end{aligned}$$

    for some \(C>0\).

Proposition 2

There exist \(\rho ,\mu >0\) and \(c\in (0,1)\) such that the following is true. Take \(x^{\dagger }\in K\) and let \(y=F(x^{\dagger })\). If \(x_0\in K\) satisfies

$$\begin{aligned} \Vert x^{\dagger }-x_0\Vert <\rho , \end{aligned}$$

then the iterates \((x_k)\) of the Landweber iteration

$$\begin{aligned} x_{k+1}=x_{k}-\mu F'(x_{k})^{*}\left( F(x_{k})-y\right) ,\qquad k\in {\mathbb {N}}, \end{aligned}$$

converge to \(x^{\dagger }\) and satisfy

$$\begin{aligned} \Vert x^{\dagger }-x_k\Vert \leqq \rho c^k,\qquad k\in {\mathbb {N}}. \end{aligned}$$

Remark The constants \(\rho \), c and \(\mu \) are given explicitly in [66] as functions of the a priori data. For instance, the constant \(\rho \), which measures how close to \(x^{\dagger }\) the initial guess \(x_0\) needs to be, may be chosen as

$$\begin{aligned} \rho =\frac{1}{2L^2\hat{L}^2 C^4}, \end{aligned}$$

and the step-size \(\mu \) needs to satisfy

$$\begin{aligned} \mu<\frac{1}{\hat{L}^{2}}\quad \text {and} \quad \mu \bigl (1-\mu \hat{L}^{2}\bigr )<C. \end{aligned}$$

The statement provided in [66] requires F to be weakly sequentially closed, but a close look to the proof indicates that this assumption may be dropped, since in this case the existence of the minimizer \(x^{\dagger }\) is granted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alberti, G.S., Santacesaria, M. Infinite-Dimensional Inverse Problems with Finite Measurements. Arch Rational Mech Anal 243, 1–31 (2022). https://doi.org/10.1007/s00205-021-01718-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01718-4

Mathematics Subject Classification:

Navigation