Skip to main content
Log in

Long-Time Behavior of Alfvén Waves in a Flowing Plasma: Generation of the Magnetic Island

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Magnetic islands are the regions enclosed by magnetic field lines and separated by reconnection points. In this paper, we study the long-time behavior of the solution for the linearized MHD system around the linearly stable, steady flowing plasma with sheared velocity and magnetic field. As a consequence, we prove that for a class of initial data, the magnetic islands appear at the final state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bardos, C., Sulem, C., Sulem, P.L.: Long-time dynamics of a conductive fluid in the presence of a strong magnetic field. Trans. Am. Math. Soc. 305, 175–191, 1988

  2. Bedrossian, J., Coti Zelati, M., Vicol, V.: Vortex axisymmetrization, inviscid damping, and vorticity depletion in the linearized 2D Euler equations. Ann. PDE 5, 192, 2019

  3. Biskamp, D.: Magnetic reconnection via current sheets. Phys. Fluids 29, 1520–1531, 1986

    Article  ADS  Google Scholar 

  4. Biskamp, D.: Magnetic Reconnection in Plasmas. Cambridge Monographs on Plasma Physics. Springer, Berlin (2005)

    MATH  Google Scholar 

  5. Cai, Y., Lei, Z.: Global well-posedness of the incompressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 228, 969–993, 2018

  6. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  7. Grossmann, W., Tataronis, J.: The excitation of waves and resonances in high-beta plasmas. In: Proceedings of the 2nd Topical Conference on Pulsed High-Beta Plasmas, IPP-Report 1/127, Paper B-6, 1972

  8. He, L., Xu, L., Yu, P.: On global dynamics of three dimensional magnetohydrodynamics: nonlinear stability of Alfvén waves. Ann. PDE 4, 105, 2018

  9. Heyvaerts, J., Priest, E.R.: Coronal heating by phase-mixed shear Alfvén waves. Astron. Astrophys. 117, 200–234, 1983

  10. Hirota, M., Tatsuno, T., Yoshida, Z.: Resonance between continuous spectra: secular behavior of Alfvén waves in a flowing plasma. Phys. Plas. 12, 012107, 2005

  11. Lifschitz, A.: Magnetohydrodynamics and Spectral Theory. Kluwer Academic Publishers, Dordrecht (1989)

    Book  Google Scholar 

  12. Liu, H., Masmoudi, N., Zhai, C., Zhao, W.: linear damping and depletion in flowing plasma with strong sheared magnetic fields. arXiv:2103.14614 (2021).

  13. Ren, C., Chu, M.S., Callen, J.D.: Magnetic island deformation due to sheared flow and viscosity. Phys. Plasmas 6, 1203–1207, 1999

  14. Ren, S., Wei, D., Zhang, Z.: Long time behavior of Alfvén waves in flowing plasma: the destruction of magnetic island. Preprint.

  15. Ren, S., Zhao, W.: Linear damping of Alfvén waves by phase mixing. SIAM J. Math. Anal. 49, 2101–2137, 2017

  16. Stern, M.E.: Joint instability of hydromagnetic fields which are separately stable. Phys. Fluids 6, 636–642, 1963

    Article  ADS  MathSciNet  Google Scholar 

  17. Tataronis, J., Grossmann, W.: On the spectrum of ideal MHD. In: Proceedings of the 2nd Topical Conference on Pulsed High-Beta Plasmas, IPP-Report 1/127, Paper B-5, 1972

  18. Tataronis, J., Grossmann, W.: Decay of MHD wave by phase mixing I. The sheet-pinch in plane geometry. Z. Phys. 261, 203–216, 1973

  19. Uberoi, C.: Alfvén waves in inhomogeneous magnetic fields. Phys. Fluids 2, 1673–1675, 1972

    Article  ADS  Google Scholar 

  20. Waelbroeck, F.L.: Theory and observations of magnetic islands. Nucl. Fusion 49, 104025, 2009

    Article  ADS  Google Scholar 

  21. Wei, D., Zhang, Z.: Global well-posedness of the MHD equations in a homogeneous magnetic field. Anal. PDE 10, 1361–1406, 2017

  22. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping for a class of monotone shear flow in Sobolev spaces. Commun. Pure Appl. Math. 71, 617–687, 2018

  23. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and vorticity depletion for shear flows. Ann. PDE 5, 101, 2019

  24. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and enhanced dissipation for the Kolmogorov flow. Adv. Math. 362, 106963, 2020

  25. Wei, D., Zhang, Z., Zhu, H.: Linear inviscid damping for the \(\beta \)-Plane equation. Commun. Math. Phys. 375, 127–174, 2020

  26. Zillinger, C.: Linear inviscid damping for monotone shear flows. Trans. Am. Math. Soc. 369, 8799–8855, 2017

    Article  MathSciNet  Google Scholar 

  27. Zohm, H.: Magnetohydrodynamic Stability of Tokamaks. Wiley, New York (2015)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for the invaluable comments and suggestions, which have helped us improve the paper significantly. Z. Zhang is supported by NSF of China under Grant 12171010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiren Zhao.

Additional information

Communicated by N. Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this “Appendix”, let us complete the extension process for Case 2–9.

Case 2 \(W_+(1)= W_-(-1)>0> W_-(1)>W_+(-1)\). Let

$$\begin{aligned}&D_0{\mathop {=}\limits ^{def}}\big \{c\in [W_+(-1), W_+(1)]\big \},\\&D_{\epsilon _0}{\mathop {=}\limits ^{def}}\big \{c=c_r+i\epsilon , \ c_r \in [W_+(-1), W_+(1)], \ 0<|\epsilon |<\epsilon _0\big \},\\&B_{\epsilon _0}^{l}{\mathop {=}\limits ^{def}}\big \{c=W_+(-1)+\epsilon e^{i\theta }, \ 0<\epsilon<\epsilon _0, \ \frac{\pi }{2}\leqq \theta \leqq \frac{3\pi }{2}\big \},\\&B_{\epsilon _0}^{r}{\mathop {=}\limits ^{def}}\big \{c=W_+(1)-\epsilon e^{i\theta }, \ 0<\epsilon <\epsilon _0, \ \frac{\pi }{2}\leqq \theta \leqq \frac{3\pi }{2}\big \}, \end{aligned}$$

for some \(\epsilon _0\in (0,1).\) We denote \( \Omega _{\epsilon _0}{\mathop {=}\limits ^{def}}D_0\cup D_{\epsilon _0}\cup B_{\epsilon _0}^{l}\cup B_{\epsilon _0}^{r}. \) We define

$$\begin{aligned} c_r=Re\, c\ \text {for} \ c\in D_0\cup D_{\epsilon _0}, \quad c_r=W_+(-1) \ \text {for} \ c\in B_{\epsilon _0}^{l}, \quad c_r=W_+(1) \ \text {for} \ c\in B_{\epsilon _0}^{r}. \end{aligned}$$

By Lemma 3.1, we can take a \(C^5\) extension of \(W_-\) to be \(\widetilde{W}_-\) for \(y\in [-1,\mathrm{{a}}_+]\) such that \(\widetilde{W}_-(\mathrm{{a}}_+)=W_+(-1)\) and \(\widetilde{W}'_-(y)<0\).

  • For \(c\in D_0\cup D_{\epsilon _0}\) and \(c_r\geqq 0\), we denote \(y_{c_+}\in [0,1]\) with \(y_{c_+}=(W_+)^{-1}(c_r)\) so that \(W_+(y_{c_+})-c_r=0\), and \(y_{c_-}\in [-1,0]\) with \(y_{c_-}=(W_-)^{-1}(c_r)\) so that \(W_-(y_{c_-})-c_r=0\).

  • For \(c\in D_0\cup D_{\epsilon _0}\) and \(c_r\leqq 0\), we denote \(y_{c_+}\in [0,\mathrm{{a}}_+]\) with \(y_{c_+}=(\widetilde{W}_-)^{-1}(c_r)\) so that \(\widetilde{W}_-(y_{c_+})-c_r=0\), and \(y_{c_-}\in [-1,0]\) with \(y_{c_-}=(W_+)^{-1}(c_r)\) so that \(W_+(y_{c_-})-c_r=0\).

  • For \(c\in B_{\epsilon _0}^l\), then \(c_r=W_+(-1)=\widetilde{W}_-(\mathrm{{a}}_+)\), and we denote \(y_{c_+}=\mathrm{{a}}_+\) and \(y_{c_-}=-1\).

  • For \(c\in B_{\epsilon _0}^r\), then \(c_r=W_+(1)=W_-(-1)\), and we denote \(y_{c_+}=1\) and \(y_{c_-}=-1\).

We show the relationship between \(y_{c_+}, y_{c_-}\) and \(c_r\) in Fig. 6. We also take a \(C^5\) extension of \(W_+\) to be \(\widetilde{W}_+\) for \(y\in [-1,\mathrm{{a}}_+]\) so that \(\widetilde{W}_+'(y)>0\).

Case 3 \(W_-(-1)> W_+(1)>0> W_-(1)>W_+(-1)\). Let

$$\begin{aligned}&D_0{\mathop {=}\limits ^{def}}\big \{c\in [W_+(-1), W_-(-1)]\big \},\\&D_{\epsilon _0}{\mathop {=}\limits ^{def}}\big \{c=c_r+i\epsilon , \ c_r\in [W_+(-1), W_-(-1)], \ 0<|\epsilon |<\epsilon _0\big \},\\&B_{\epsilon _0}^{l}{\mathop {=}\limits ^{def}}\big \{c=W_+(-1)+\epsilon e^{i\theta },\ 0<\epsilon<\epsilon _0, \ \frac{\pi }{2}\leqq \theta \leqq \frac{3\pi }{2}\big \},\\&B_{\epsilon _0}^{r}{\mathop {=}\limits ^{def}}\big \{c=W_-(-1)-\epsilon e^{i\theta }, \ 0<\epsilon <\epsilon _0, \ \frac{\pi }{2}\leqq \theta \leqq \frac{3\pi }{2}\big \}, \end{aligned}$$

for some \(\epsilon _0\in (0,1).\) We denote \( \Omega _{\epsilon _0}{\mathop {=}\limits ^{def}}D_0\cup D_{\epsilon _0}\cup B_{\epsilon _0}^{l}\cup B_{\epsilon _0}^{r}. \) We define

$$\begin{aligned} c_r=Re\, c\ \text {for} \ c\in D_0\cup D_{\epsilon _0}, \quad c_r=W_+(-1) \ \text {for} \ c\in B_{\epsilon _0}^{l}, \quad c_r=W_-(-1) \ \text {for} \ c\in B_{\epsilon _0}^{r}. \end{aligned}$$

By Lemma 3.1, we can take a \(C^5\) extension of \(W_-\) to be \(\widetilde{W}_-\) and \(W_+\) to be \(\widetilde{W}_+\) for \(y\in [-1,\mathrm{{a}}_+]\) such that \(\widetilde{W}_-(\mathrm{{a}}_+)=W_+(-1)\), \(\widetilde{W}'_-(y)<0\) and \(\widetilde{W}_+(\mathrm{{a}}_+)=W_-(-1)\), \(\widetilde{W}'_+(y)>0\).

  • For \(c\in D_0\cup D_{\epsilon _0}\) and \(c_r\geqq 0\), we denote \(y_{c_+}\in [0,\mathrm{{a}}_+]\) with \(y_{c_+}=(\widetilde{W}_+)^{-1}(c_r)\) so that \(\widetilde{W}_+(y_{c_+})-c_r=0\), and \(y_{c_-}\in [-1,0]\) with \(y_{c_-}=(W_-)^{-1}(c_r)\) so that \(W_-(y_{c_-})-c_r=0\).

  • For \(c\in D_0\cup D_{\epsilon _0}\) and \(c_r\leqq 0\), we denote \(y_{c_+}\in [0,\mathrm{{a}}_+]\) with \(y_{c_+}=(\widetilde{W}_-)^{-1}(c_r)\) so that \(\widetilde{W}_-(y_{c_+})-c_r=0\), and \(y_{c_-}\in [-1,0]\) with \(y_{c_-}=(W_+)^{-1}(c_r)\) so that \(W_+(y_{c_-})-c_r=0\).

  • For \(c\in B_{\epsilon _0}^l\), then \(c_r=W_+(-1)=\widetilde{W}_-(\mathrm{{a}}_+)\), and we denote \(y_{c_+}=\mathrm{{a}}_+\) and \(y_{c_-}=-1\).

  • For \(c\in B_{\epsilon _0}^r\), then \(c_r=W_-(-1)=\widetilde{W}_+(\mathrm{{a}}_+)\), and we denote \(y_{c_+}=\mathrm{{a}}_+\) and \(y_{c_-}=-1\).

We show the relationship between \(y_{c_+}, y_{c_-}\) and \(c_r\) in Fig. 7.

Fig. 6
figure 6

Case 2

Fig. 7
figure 7

Case 3

Case 4 \(W_+(1)> W_-(-1)>0> W_-(1)=W_+(-1)\). Let

$$\begin{aligned}&D_0{\mathop {=}\limits ^{def}}\big \{c\in [W_+(-1), W_+(1)]\big \},\\&D_{\epsilon _0}{\mathop {=}\limits ^{def}}\big \{c=c_r+i\epsilon , \ c_r\in [W_+(-1), W_+(1)], \ 0<|\epsilon |<\epsilon _0\big \},\\&B_{\epsilon _0}^{l}{\mathop {=}\limits ^{def}}\big \{c=W_+(-1)+\epsilon e^{i\theta },\ 0<\epsilon<\epsilon _0, \ \frac{\pi }{2}\leqq \theta \leqq \frac{3\pi }{2}\big \},\\&B_{\epsilon _0}^{r}{\mathop {=}\limits ^{def}}\big \{c=W_+(1)-\epsilon e^{i\theta }, \ 0<\epsilon <\epsilon _0, \ \frac{\pi }{2}\leqq \theta \leqq \frac{3\pi }{2}\big \}, \end{aligned}$$

for some \(\epsilon _0\in (0,1).\) We denote \( \Omega _{\epsilon _0}{\mathop {=}\limits ^{def}}D_0\cup D_{\epsilon _0}\cup B_{\epsilon _0}^{l}\cup B_{\epsilon _0}^{r}. \) We define

$$\begin{aligned} c_r=Re\, c\ \text {for} \ c\in D_0\cup D_{\epsilon _0}, \quad c_r=W_+(-1) \ \text {for} \ c\in B_{\epsilon _0}^{l}, \quad c_r=W_+(1) \ \text {for} \ c\in B_{\epsilon _0}^{r}. \end{aligned}$$

By Lemma 3.1, we can take a \(C^5\) extension of \(W_-\) to be \(\widetilde{W}_-\) for \(y\in [\mathrm{{a}}_-,1]\) such that \(\widetilde{W}_-(\mathrm{{a}}_-)=W_+(1)\) and \(\widetilde{W}'_-(y)<0\).

  • For \(c\in D_0\cup D_{\epsilon _0}\) and \(c_r\geqq 0\), we denote \(y_{c_+}\in [0,1]\) with \(y_{c_+}=(W_+)^{-1}(c_r)\) so that \(W_+(y_{c_+})-c_r=0\), and \(y_{c_-}\in [\mathrm{{a}}_-,0]\) with \(y_{c_-}=(\widetilde{W}_-)^{-1}(c_r)\) so that \(\widetilde{W}_-(y_{c_-})-c_r=0\).

  • For \(c\in D_0\cup D_{\epsilon _0}\) and \(c_r\leqq 0\), we denote \(y_{c_+}\in [0,1]\) with \(y_{c_+}=(W_-)^{-1}(c_r)\) so that \(W_-(y_{c_+})-c_r=0\), and \(y_{c_-}\in [-1,0]\) with \(y_{c_-}=(W_+)^{-1}(c_r)\) so that \(W_+(y_{c_-})-c_r=0\).

  • For \(c\in B_{\epsilon _0}^l\), then \(c_r=W_+(-1)=W_-(1)\), and we denote \(y_{c_+}=1\) and \(y_{c_-}=-1\).

  • For \(c\in B_{\epsilon _0}^r\), then \(c_r=W_+(1)=\widetilde{W}_-(\mathrm{{a}}_-)\), and we denote \(y_{c_+}=1\) and \(y_{c_-}=\mathrm{{a}}_-\).

We show the relationship between \(y_{c_+}, y_{c_-}\) and \(c_r\) in Fig. 8. We also take a \(C^5\) extension of \(W_+\) to be \(\widetilde{W}_+\) for \(y\in [\mathrm{{a}}_-,1]\), so that \(\widetilde{W}_+'(y)>0\).

Case 5 \(W_+(1)> W_-(-1)>0> W_+(-1)>W_-(1)\). Let

$$\begin{aligned}&D_0{\mathop {=}\limits ^{def}}\big \{c\in [W_-(1), W_+(1)]\big \},\\&D_{\epsilon _0}{\mathop {=}\limits ^{def}}\big \{c=c_r+i\epsilon , \ c_r\in [W_-(1), W_+(1)], \ 0<|\epsilon |<\epsilon _0\big \},\\&B_{\epsilon _0}^{l}{\mathop {=}\limits ^{def}}\big \{c=W_-(1)+\epsilon e^{i\theta },\ 0<\epsilon<\epsilon _0, \ \frac{\pi }{2}\leqq \theta \leqq \frac{3\pi }{2}\big \},\\&B_{\epsilon _0}^{r}{\mathop {=}\limits ^{def}}\big \{c=W_+(1)-\epsilon e^{i\theta }, \ 0<\epsilon <\epsilon _0, \ \frac{\pi }{2}\leqq \theta \leqq \frac{3\pi }{2}\big \}, \end{aligned}$$

for some \(\epsilon _0\in (0,1).\) We denote \( \Omega _{\epsilon _0}{\mathop {=}\limits ^{def}}D_0\cup D_{\epsilon _0}\cup B_{\epsilon _0}^{l}\cup B_{\epsilon _0}^{r}. \) We define

$$\begin{aligned} c_r=Re\, c\ \text {for} \ c\in D_0\cup D_{\epsilon _0}, \quad c_r=W_-(1) \ \text {for} \ c\in B_{\epsilon _0}^{l}, \quad c_r=W_+(1) \ \text {for} \ c\in B_{\epsilon _0}^{r}. \end{aligned}$$

By Lemma 3.1, we can take a \(C^5\) extension of \(W_-\) to be \(\widetilde{W}_-\) and \(W_+\) to be \(\widetilde{W}_+\) for \(y\in [\mathrm{{a}}_-,1]\) such that \(\widetilde{W}_-(\mathrm{{a}}_-)=W_+(1)\), \(\widetilde{W}'_-(y)<0\) and \(\widetilde{W}_+(\mathrm{{a}}_-)=W_-(1)\), \(\widetilde{W}'_+(y)>0\).

  • For \(c\in D_0\cup D_{\epsilon _0}\) and \(c_r\geqq 0\), we denote \(y_{c_+}\in [0,1]\) with \(y_{c_+}=(W_+)^{-1}(c_r)\) so that \(W_+(y_{c_+})-c_r=0\), and \(y_{c_-}\in [\mathrm{{a}}_-,0]\) with \(y_{c_-}=(\widetilde{W}_-)^{-1}(c_r)\) so that \(\widetilde{W}_-(y_{c_-})-c_r=0\).

  • For \(c\in D_0\cup D_{\epsilon _0}\) and \(c_r\leqq 0\), we denote \(y_{c_+}\in [0,1]\) with \(y_{c_+}=(W_-)^{-1}(c_r)\) so that \(W_-(y_{c_+})-c_r=0\), and \(y_{c_-}\in [\mathrm{{a}}_-,0]\) with \(y_{c_-}=(\widetilde{W}_+)^{-1}(c_r)\) so that \(\widetilde{W}_+(y_{c_-})-c_r=0\).

  • For \(c\in B_{\epsilon _0}^l\), then \(c_r=W_-(1)=\widetilde{W}_+(\mathrm{{a}}_-)\), and we denote \(y_{c_+}=1\) and \(y_{c_-}=\mathrm{{a}}_-\).

  • For \(c\in B_{\epsilon _0}^r\), then \(c_r=W_+(1)=\widetilde{W}_-(\mathrm{{a}}_-)\), and we denote \(y_{c_+}=1\) and \(y_{c_-}=\mathrm{{a}}_-\).

We show the relationship between \(y_{c_+}, y_{c_-}\) and \(c_r\) in Fig. 9.

Fig. 8
figure 8

Case 4

Fig. 9
figure 9

Case 5

Case 6 \(W_+(1)=W_-(-1)>0> W_-(1)=W_+(-1)\). We do not extend \(W_{\pm }\) due to \(Ran\, W_+=Ran\, W_-\). Let

$$\begin{aligned}&D_0{\mathop {=}\limits ^{def}}\big \{c\in [W_-(1), W_+(1)]\big \},\\&D_{\epsilon _0}{\mathop {=}\limits ^{def}}\big \{c=c_r+i\epsilon , \ c_r\in [W_-(1), W_+(1)], \ 0<|\epsilon |<\epsilon _0\big \},\\&B_{\epsilon _0}^l{\mathop {=}\limits ^{def}}\big \{c=W_-(1)+\epsilon e^{i\theta },\ 0<\epsilon<\epsilon _0, \ \frac{\pi }{2}\leqq \theta \leqq \frac{3\pi }{2}\big \},\\&B_{\epsilon _0}^r{\mathop {=}\limits ^{def}}\big \{c=W_+(1)-\epsilon e^{i\theta }, \ 0<\epsilon <\epsilon _0, \ \frac{\pi }{2}\leqq \theta \leqq \frac{3\pi }{2}\big \}, \end{aligned}$$

for some \(\epsilon _0\in (0,1).\) We denote \( \Omega _{\epsilon _0}{\mathop {=}\limits ^{def}}D_0\cup D_{\epsilon _0}\cup B_{\epsilon _0}^l\cup B_{\epsilon _0}^r. \) We define

$$\begin{aligned} c_r=Re\, c\ \text {for} \ c\in D_0\cup D_{\epsilon _0}, \quad c_r=W_-(1) \ \text {for} \ c\in B_{\epsilon _0}^l, \quad c_r=W_+(1) \ \text {for} \ c\in B_{\epsilon _0}^r. \end{aligned}$$
  • For \(c\in D_0\cup D_{\epsilon _0}\) and \(c_r\geqq 0\), we denote \(y_{c_+}\in [0,1]\) with \(y_{c_+}=(W_+)^{-1}(c_r)\) so that \(W_+(y_{c_+})-c_r=0\), and \(y_{c_-}\in [-1,0]\) with \(y_{c_-}=(W_-)^{-1}(c_r)\) so that \(W_-(y_{c_-})-c_r=0\).

  • For \(c\in D_0\cup D_{\epsilon _0}\) and \(c_r\leqq 0\), we denote \(y_{c_+}\in [0,1]\) with \(y_{c_+}=(W_-)^{-1}(c_r)\) so that \(W_-(y_{c_+})-c_r=0\), and \(y_{c_-}\in [-1,0]\) with \(y_{c_-}=(W_+)^{-1}(c_r)\) so that \(W_+(y_{c_-})-c_r=0\).

  • For \(c\in B_{\epsilon _0}^l\), then \(c_r=W_-(1)=W_+(-1)\), and we denote \(y_{c_+}=1\) and \(y_{c_-}=-1\).

  • For \(c\in B_{\epsilon _0}^r\), then \(c_r=W_+(1)=W_-(-1)\), and we denote \(y_{c_+}=1\) and \(y_{c_-}=-1\).

We show the relationship between \(y_{c_+}\), \(y_{c_-}\) and \(c_r\) in Fig. 10.

Case 7 \(W_+(1)= W_-(-1)>0> W_+(-1)>W_-(1)\). Let

$$\begin{aligned}&D_0{\mathop {=}\limits ^{def}}\big \{c\in [W_-(1), W_+(1)]\big \},\\&D_{\epsilon _0}{\mathop {=}\limits ^{def}}\big \{c=c_r+i\epsilon , \ c_r\in [W_-(1), W_+(1)], \ 0<|\epsilon |<\epsilon _0\big \},\\&B_{\epsilon _0}^{l}{\mathop {=}\limits ^{def}}\big \{c=W_-(1)+\epsilon e^{i\theta },\ 0<\epsilon<\epsilon _0, \ \frac{\pi }{2}\leqq \theta \leqq \frac{3\pi }{2}\big \},\\&B_{\epsilon _0}^{r}{\mathop {=}\limits ^{def}}\big \{c=W_+(1)-\epsilon e^{i\theta }, \ 0<\epsilon <\epsilon _0, \ \frac{\pi }{2}\leqq \theta \leqq \frac{3\pi }{2}\big \}, \end{aligned}$$

for some \(\epsilon _0\in (0,1).\) We denote \( \Omega _{\epsilon _0}{\mathop {=}\limits ^{def}}D_0\cup D_{\epsilon _0}\cup B_{\epsilon _0}^{l}\cup B_{\epsilon _0}^{r}. \) We define

$$\begin{aligned} c_r=Re\, c\ \text {for} \ c\in D_0\cup D_{\epsilon _0}, \quad c_r=W_-(1) \ \text {for} \ c\in B_{\epsilon _0}^{l}, \quad c_r=W_+(1) \ \text {for} \ c\in B_{\epsilon _0}^{r}. \end{aligned}$$

By Lemma 3.1, we can take a \(C^5\) extension of \(W_+\) to be \(\widetilde{W}_+\) for \(y\in [\mathrm{{a}}_-,1]\) such that \(\widetilde{W}_+(\mathrm{{a}}_-)=W_-(1)\), \(\widetilde{W}'_+(y)>0\).

  • For \(c\in D_0\cup D_{\epsilon _0}\) and \(c_r\geqq 0\), we denote \(y_{c_+}\in [0,1]\) with \(y_{c_+}=(W_+)^{-1}(c_r)\) so that \(W_+(y_{c_+})-c_r=0\), and \(y_{c_-}\in [-1,0]\) with \(y_{c_-}=(W_-)^{-1}(c_r)\) so that \(W_-(y_{c_-})-c_r=0\).

  • For \(c\in D_0\cup D_{\epsilon _0}\) and \(c_r\leqq 0\), we denote \(y_{c_+}\in [0,1]\) with \(y_{c_+}=(W_-)^{-1}(c_r)\) so that \(W_-(y_{c_+})-c_r=0\), and \(y_{c_-}\in [\mathrm{{a}}_-,0]\) with \(y_{c_-}=(\widetilde{W}_+)^{-1}(c_r)\) so that \(\widetilde{W}_+(y_{c_-})-c_r=0\).

  • For \(c\in B_{\epsilon _0}^l\), then \(c_r=W_-(1)=\widetilde{W}_+(\mathrm{{a}}_-)\), and we denote \(y_{c_+}=1\) and \(y_{c_-}=\mathrm{{a}}_-\).

  • For \(c\in B_{\epsilon _0}^r\), then \(c_r=W_+(1)=W_-(-1)\), and we denote \(y_{c_+}=1\) and \(y_{c_-}=-1\).

We show the relationship between \(y_{c_+}, y_{c_-}\) and \(c_r\) in Fig. 11

Fig. 10
figure 10

Case 6

Fig. 11
figure 11

Case 7

We also take a \(C^5\) extension of \(W_-\) to be \(\widetilde{W}_-\) for \(y\in [\mathrm{{a}}_-,1]\) so that \(\widetilde{W}_-'(y)<0\).

Case 8 \(W_-(-1)> W_+(1)>0> W_-(1)=W_+(-1)\). Let

$$\begin{aligned}&D_0{\mathop {=}\limits ^{def}}\big \{c\in [W_+(-1), W_-(-1)]\big \},\\&D_{\epsilon _0}{\mathop {=}\limits ^{def}}\big \{c=c_r+i\epsilon , \ c_r\in [W_+(-1), W_-(-1)], \ 0<|\epsilon |<\epsilon _0\big \},\\&B_{\epsilon _0}^{l}{\mathop {=}\limits ^{def}}\big \{c=W_+(-1)+\epsilon e^{i\theta },\ 0<\epsilon<\epsilon _0, \ \frac{\pi }{2}\leqq \theta \leqq \frac{3\pi }{2}\big \},\\&B_{\epsilon _0}^{r}{\mathop {=}\limits ^{def}}\big \{c=W_-(-1)-\epsilon e^{i\theta }, \ 0<\epsilon <\epsilon _0, \ \frac{\pi }{2}\leqq \theta \leqq \frac{3\pi }{2}\big \}, \end{aligned}$$

for some \(\epsilon _0\in (0,1).\) We denote \( \Omega _{\epsilon _0}{\mathop {=}\limits ^{def}}D_0\cup D_{\epsilon _0}\cup B_{\epsilon _0}^{l}\cup B_{\epsilon _0}^{r}. \) We define

$$\begin{aligned} c_r=Re\, c\ \text {for} \ c\in D_0\cup D_{\epsilon _0}, \quad c_r=W_+(-1) \ \text {for} \ c\in B_{\epsilon _0}^{l}, \quad c_r=W_-(-1) \ \text {for} \ c\in B_{\epsilon _0}^{r}. \end{aligned}$$

By Lemma 3.1, we can take a \(C^5\) extension of \(W_+\) to be \(\widetilde{W}_+\) for \(y\in [-1,\mathrm{{a}}_+]\) such that \(\widetilde{W}_+(\mathrm{{a}}_+)=W_-(-1)\), \(\widetilde{W}'_+(y)>0\).

  • For \(c\in D_0\cup D_{\epsilon _0}\) and \(c_r\geqq 0\), we denote \(y_{c_+}\in [0,\mathrm{{a}}_+]\) with \(y_{c_+}=(\widetilde{W}_+)^{-1}(c_r)\) so that \(\widetilde{W}_+(y_{c_+})-c_r=0\), and \(y_{c_-}\in [-1,0]\) with \(y_{c_-}=(W_-)^{-1}(c_r)\) so that \(W_-(y_{c_-})-c_r=0\).

  • For \(c\in D_0\cup D_{\epsilon _0}\) and \(c_r\leqq 0\), we denote \(y_{c_+}\in [0,1]\) with \(y_{c_+}=(W_-)^{-1}(c_r)\) so that \(W_-(y_{c_+})-c_r=0\), and \(y_{c_-}\in [-1,0]\) with \(y_{c_-}=(W_+)^{-1}(c_r)\) so that \(W_+(y_{c_-})-c_r=0\).

  • For \(c\in B_{\epsilon _0}^l\), then \(c_r=W_+(-1)=W_-(-1)\), and we denote \(y_{c_+}=1\) and \(y_{c_-}=-1\).

  • For \(c\in B_{\epsilon _0}^r\), then \(c_r=W_-(-1)=\widetilde{W}_+(\mathrm{{a}}_+)\), and we denote \(y_{c_+}=\mathrm{{a}}_+\) and \(y_{c_-}=-1\).

We show the relationship between \(y_{c_+}, y_{c_-}\) and \(c_r\) in Fig. 12. We also take a \(C^5\) extension of \(W_-\) to be \(\widetilde{W}_-\) for \(y\in [-1, \mathrm{{a}}_+]\) so that \(\widetilde{W}_-'(y)<0\).

Case 9 \(W_-(-1)> W_+(1)>0> W_+(-1)>W_-(1)\). Let

$$\begin{aligned}&D_0{\mathop {=}\limits ^{def}}\big \{c\in [W_-(1), W_-(-1)]\big \},\\&D_{\epsilon _0}{\mathop {=}\limits ^{def}}\big \{c=c_r+i\epsilon , \ c_r \in [W_-(1), W_-(-1)], \ 0<|\epsilon |<\epsilon _0\big \},\\&B_{\epsilon _0}^{l}{\mathop {=}\limits ^{def}}\big \{c=W_-(1)+\epsilon e^{i\theta }, \ 0<\epsilon<\epsilon _0, \ \frac{\pi }{2}\leqq \theta \leqq \frac{3\pi }{2}\big \},\\&B_{\epsilon _0}^{r}{\mathop {=}\limits ^{def}}\big \{c=W_-(-1)-\epsilon e^{i\theta }, \ 0<\epsilon <\epsilon _0, \ \frac{\pi }{2}\leqq \theta \leqq \frac{3\pi }{2}\big \}, \end{aligned}$$

for some \(\epsilon _0\in (0,1).\) We denote \( \Omega _{\epsilon _0}{\mathop {=}\limits ^{def}}D_0\cup D_{\epsilon _0}\cup B_{\epsilon _0}^{l}\cup B_{\epsilon _0}^{r}. \) We define

$$\begin{aligned} c_r=Re\, c\ \text {for} \ c\in D_0\cup D_{\epsilon _0}, \quad c_r=W_-(1) \ \text {for} \ c\in B_{\epsilon _0}^{l}, \quad c_r=W_-(-1) \ \text {for} \ c\in B_{\epsilon _0}^{r}. \end{aligned}$$

By Lemma 3.1, we can take a \(C^5\) extension of \(W_+\) to be \(\widetilde{W}_+\) for \(y\in [\mathrm{{a}}_-,\mathrm{{a}}_+]\) such that \(\widetilde{W}_+(\mathrm{{a}}_-)=W_-(1)\), \(\widetilde{W}_+(\mathrm{{a}}_+)=W_-(-1)\) and \(\widetilde{W}'_+(y)>0\).

  • For \(c\in D_0\cup D_{\epsilon _0}\) and \(c_r\geqq 0\), we denote \(y_{c_+}\in [0,\mathrm{{a}}_+]\) with \(y_{c_+}=(\widetilde{W}_+)^{-1}(c_r)\) so that \(\widetilde{W}_+(y_{c_+})-c_r=0\), and \(y_{c_-}\in [-1,0]\) with \(y_{c_-}=(W_-)^{-1}(c_r)\) so that \(W_-(y_{c_-})-c_r=0\).

  • For \(c\in D_0\cup D_{\epsilon _0}\) and \(c_r\leqq 0\), we denote \(y_{c_+}\in [0,1]\) with \(y_{c_+}=(W_-)^{-1}(c_r)\) so that \(W_-(y_{c_+})-c_r=0\), and \(y_{c_-}\in [\mathrm{{a}}_-,0]\) with \(y_{c_-}=(\widetilde{W}_+)^{-1}(c_r)\) so that \(\widetilde{W}_+(y_{c_-})-c_r=0\).

  • For \(c\in B_{\epsilon _0}^l\), then \(c_r=W_-(1)=\widetilde{W}_+(a_-)\), and we denote \(y_{c_+}=1\) and \(y_{c_-}=\mathrm{{a}}_-\).

  • For \(c\in B_{\epsilon _0}^r\), then \(c_r=W_-(-1)=\widetilde{W}_+(\mathrm{{a}}_+)\), and we denote \(y_{c_+}=\mathrm{{a}}_+\) and \(y_{c_-}=-1\).

We show the relationship between \(y_{c_+}, y_{c_-}\) and \(c_r\) in Fig. 13.

Fig. 12
figure 12

Case 8

Fig. 13
figure 13

Case 9

We also take a \(C^5\) extension of \(W_-\) to be \(\widetilde{W}_-\) for \(y\in [\mathrm{{a}_-}, \mathrm{{a}}_+]\) so that \(\widetilde{W}_-'(y)<0\).

In the last step of Case 2, 4, 7, 8, 9, we only restrict the regularity and monotonicity of the extension.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, C., Zhang, Z. & Zhao, W. Long-Time Behavior of Alfvén Waves in a Flowing Plasma: Generation of the Magnetic Island. Arch Rational Mech Anal 242, 1317–1394 (2021). https://doi.org/10.1007/s00205-021-01706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01706-8

Navigation