Skip to main content
Log in

Degenerate Free Discontinuity Problems and Spectral Inequalities in Quantitative Form

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We introduce a new geometric–analytic functional that we analyse in the context of free discontinuity problems. Its main feature is that the geometric term (the length of the jump set) appears with a negative sign. This is motivated by searching quantitative inequalities for the best constants of Sobolev–Poincaré inequalities with trace terms in \({\mathbb {R}}^n\) which correspond to fundamental eigenvalues associated to semilinear problems for the Laplace operator with Robin boundary conditions. Our method is based on the study of this new, degenerate, functional which involves an obstacle problem in interaction with the jump set. Ultimately, this becomes a mixed free discontinuity/free boundary problem occuring above/at the level of the obstacle, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, N.; Fusco, L.; Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)

  2. Bossel, M.-H.: Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l’inégalité de Cheeger. C. R. Acad. Sci. Paris Sér. I Math. 302(1), 47–50 (1986)

  3. Brasco, L., De Philippis, G. Spectral inequalities in quantitative form. In: Shape Optimization and Spectral Theory, pp. 201–281. De Gruyter Open, Warsaw (2017)

  4. Brasco, Lorenzo; De Philippis, Guido; Ruffini, Berardo: Spectral optimization for the Stekloff–Laplacian: the stability issue. J. Funct. Anal. 262(11), 4675–4710, 2012

    Article  MathSciNet  Google Scholar 

  5. Brasco, Lorenzo; De Philippis, Guido; Velichkov, Bozhidar: Faber–Krahn inequalities in sharp quantitative form. Duke Math. J. 164(9), 1777–1831, 2015

    Article  MathSciNet  Google Scholar 

  6. Brasco, Lorenzo; Pratelli, Aldo: Sharp stability of some spectral inequalities. Geom. Funct. Anal. 22(1), 107–135, 2012

    Article  MathSciNet  Google Scholar 

  7. Bucur, Dorin; Ferone, Vincenzo; Nitsch, Carlo; Trombetti, Cristina: The quantitative Faber–Krahn inequality for the Robin Laplacian. J. Differ. Equ. 264(7), 4488–4503, 2018

    Article  ADS  MathSciNet  Google Scholar 

  8. Bucur, Dorin; Giacomini, Alessandro: A variational approach to the isoperimetric inequality for the Robin eigenvalue problem. Arch. Ration. Mech. Anal. 198(3), 927–961, 2010

    Article  MathSciNet  Google Scholar 

  9. Bucur, Dorin; Giacomini, Alessandro: Faber–Krahn inequalities for the Robin–Laplacian: a free discontinuity approach. Arch. Ration. Mech. Anal. 218(2), 757–824, 2015

    Article  MathSciNet  Google Scholar 

  10. Bucur, Dorin; Giacomini, Alessandro; Trebeschi, Paola: Best constant in Poincaré inequalities with traces: a free discontinuity approach. Ann. Inst. H. Poincaré Anal. Non Linéaire 36(7), 1959–1986, 2019

    Article  ADS  MathSciNet  Google Scholar 

  11. Bucur, Dorin; Luckhaus, Stephan: Monotonicity formula and regularity for general free discontinuity problems. Arch. Ration. Mech. Anal. 211(2), 489–511, 2014

    Article  MathSciNet  Google Scholar 

  12. Caffarelli, Luis A.; Kriventsov, Dennis: A free boundary problem related to thermal insulation. Commun. Partial Differ. Equ. 41(7), 1149–1182, 2016

    Article  MathSciNet  Google Scholar 

  13. Marco Cicalese and Gian Paolo Leonardi: A selection principle for the sharp quantitative isoperimetric inequality. Arch. Ration. Mech. Anal. 206(2), 617–643, 2012

    Article  MathSciNet  Google Scholar 

  14. Daners, Daniel: A Faber–Krahn inequality for Robin problems in any space dimension. Math. Ann. 335(4), 767–785, 2006

    Article  MathSciNet  Google Scholar 

  15. Fusco, N.; Maggi, F.; Pratelli, A.: The sharp quantitative isoperimetric inequality. Ann. Math. (2) 168(3), 941–980, 2008

    Article  MathSciNet  Google Scholar 

  16. Fusco, NicolaNicola; Zhang, Yi Ru.-YaYi. Ru.-Ya.: A quantitative form of Faber–Krahn inequality. Calc. Var. Partial Differ. Equ. 56(5), Paper No. 138, 44, 2017

    Article  MathSciNet  Google Scholar 

  17. Hansen, W., Nadirashvili, N.: Isoperimetric inequalities in potential theory. In: Proceedings from the International Conference on Potential Theory (Amersfoort, 1991), vol. 3, pp. 1–14 (1994)

  18. Melas, Antonios D.: The stability of some eigenvalue estimates. J. Differ. Geom. 36(1), 19–33, 1992

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first and the third authors were supported by the LabEx PERSYVAL-Lab GeoSpec (ANR-11-LABX-0025-01) and ANR SHAPO (ANR-18-CE40-0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorin Bucur.

Additional information

Communicated by G. Dal Maso.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A.G. is member of the Gruppo Nazionale per L’Analisi Matematica, la Probabilità e loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucur, D., Giacomini, A. & Nahon, M. Degenerate Free Discontinuity Problems and Spectral Inequalities in Quantitative Form. Arch Rational Mech Anal 242, 453–483 (2021). https://doi.org/10.1007/s00205-021-01688-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01688-7

Navigation