Skip to main content
Log in

The Saturn Ring Effect in Nematic Liquid Crystals with External Field: Effective Energy and Hysteresis

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this work we consider the Landau–de Gennes model for liquid crystals with an external magnetic field to model the occurrence of the Saturn ring effect under the assumption of rotational equivariance. After a rescaling of the energy, a variational limit is derived. Our analysis relies on precise estimates around the singularities and the study of a radial auxiliary problem in regions, where a continuous director field exists. Studying the limit problem, we explain the transition between the dipole and Saturn ring configuration and the occurence of a hysteresis phenomenon, giving a rigorous explanation of what was derived and simulated previously by [H. Stark, Eur. Phys. J. B 10, 311–321 (1999)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Alama, S., Bronsard, L., Golovaty, D., Lamy, X.: Saturn ring defect around a spherical particle immersed in nematic liquid crystal. Preprint, 2020

  2. Alama, S., Bronsard, L., Lamy, X.: Minimizers of the Landau–de Gennes energy around a spherical colloid particle. Arch. Ration. Mech. Anal. 222(1), 427–450, 2016

  3. Alama, S., Bronsard, L., Lamy, X.: Spherical particle in nematic liquid crystal under an external field: the saturn ring regime. J. Nonlinear Sci. 28(4), 1443–1465, 2018

  4. Amoddeo, A., Barberi, R., Lombardo, G.: Electric field-induced fast nematic order dynamics. Liq. Cryst. 38(1), 93–103, 2011

  5. Andrienko, D.: Introduction to liquid crystals. J. Mol. Liq. 267, 520–541, 2018

  6. Antonietti, M. (ed.): Colloid Chemistry I. Springer, Berlin 2003

  7. Badal, R., Cicalese, M., De Luca, L., Ponsiglione, M.: \(\Gamma \)-convergence analysis of a generalized \(XY\) model: fractional vortices and string defects. Commun. Math. Phys. 358(2), 705–739, 2018

  8. Ball, J.M.: Liquid crystals and their defects. In: Mathematical Thermodynamics of Complex Fluids, volume 2200 of Lecture Notes in Mathematics, pp. 1–46. Springer, Cham, 2017

  9. Ball, J.M.: Mathematics and liquid crystals. Mol. Cryst. Liq. Cryst. 647(1), 1–27, 2017

  10. Ball, J.M., Bedford, S.J.: Discontinuous order parameters in liquid crystal theories. Mol. Cryst. Liq. Cryst. 612, 1–23, 2014

  11. Ball, J.M., Majumdar, A.: Nematic liquid crystals: from Maier–Saupe to a continuum theory. Mol. Cryst. Liq. Cryst. 525(1), 1–11, 2010

  12. Bedford, S.: Function spaces for liquid crystals. Arch. Ration. Mech. Anal. 219(2), 937–984, 2016

  13. Bethuel, F.: Variational methods for Ginzburg–Landau equations. In Lecture Notes in Mathematics, pp. 1–43. Springer, Berlin, 1999

  14. Bethuel, F., Brezis, H., Hélein, F.: Asymptotics for the minimization of a Ginzburg–Landau functional. Calc. Var. Partial Differ. Equ. 1(2), 123–148, 1993

  15. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau Vortices. Birkhäuser, Boston 1994

    Book  Google Scholar 

  16. Braides, A., Cicalese , M., Solombrino , F.: \(Q\)-tensor continuum energies as limits of head-to-tail symmetric spin systems. SIAM J. Math. Anal. 47(4), 2832–2867, 2015

  17. Brezis, H., Coron, J.-M., Lieb, E.-H.: Harmonic maps with defects. Commun. Math. Phys. 107(4), 649–705, 1986

  18. Canevari, G.: Biaxiality in the asymptotic analysis of a 2D Landau–de Gennes model for liquid crystals. ESAIM. Control Optim. Calc. Var. 21(1), 101–137, 2015

  19. Canevari, G.: Defects in the Landau-de Gennes model for liquid crystals. Ph.D. thesis, Université Pierre et Marie Curie - Paris VI, 2015

  20. Canevari, G.: Line defects in the small elastic constant limit of a three-dimensional Landau–de Gennes model. Arch. Ration. Mech. Anal. 223(2), 591–676, 2017

  21. Chiron, D.: Etude mathématique de modèles issus de la physique de la matière condensée. Ph.D. thesis, Université Pierre et Marie Curie - Paris VI, 2004

  22. Contreras, A., Lamy, X.: Singular perturbation of manifold-valued maps with anisotropic energy. Preprint, 2018

  23. de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals. International Series of Monographs on Physics, 1993

  24. Demus, D., Goodby, J.W., Gray, G.W., Spiess, H.-S., Vill, V.: Handbook of Liquid Crystals. Wiley VCH Verlag GmbH, 2014

  25. Ericksen, J.L.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113(2), 97–120, 1991

  26. Forest, M.G., Wang, Q., Zhou, H.: Homogeneous pattern selection and director instabilities of nematic liquid crystal polymers induced by elongational flows. Phys. Fluids 12, 490–498, 2000

  27. Fukuda, J., Stark , H., Yoneya , M., Yokoyama , H.: Dynamics of a nematic liquid crystal around a spherical particle. J. Phys.: Condens. Matter 16(19), S1957–S1968, 2004

  28. Fukuda, J., Yokoyama , H.: Stability of the director profile of a nematic liquid crystal around a spherical particle under an external field. Eur. Phys. J. E 21(4), 341–347, 2006

  29. Fukuda, J., Yoneya , M., Yokoyama , H.: Director configuration of a nematic liquid crystal around a spherical particle: numerical analysis using adaptive mesh refinement. Mol. Cryst. Liq. Cryst. 413(1), 221–229, 2004

  30. Gartland, E.C.: Scalings and limits of Landau–deGennes models for liquid crystals: a comment on some recent analytical papers. Math. Modelling and Anal. 23(3), 414–432, 2018

  31. Gartland, E.C.: Forces and variational compatibility for equilibrium liquid crystal director models with coupled electric fields. Continuum Mech. Thermodyn. 32(6), 1559–1593, 2020

  32. Goldman, M., Merlet, B., Millot, V.: A Ginzburg–Landau model with topologically induced free discontinuities. Ann. Inst. Fourier 2017

  33. Gu, Y., Abbott, N.L.: Observation of saturn-ring defects around solid microspheres in nematic liquid crystals. Phys. Rev. Lett. 85(22), 4719–4722, 2000

    Article  ADS  Google Scholar 

  34. Ignat, R., Lamy, X.: Lifting of \({\mathbb{R}}{\mathbb{P}}^{d-1}\)-valued maps in \(BV\) and applications to uniaxial \(Q\)-tensors. With an appendix on an intrinsic \(BV\)-energy for manifold-valued maps. Calc. Var. Partial Differ. Equ. 58(2), Art. 68, 26, 2019

  35. Jerrard, R.L.: Lower bounds for generalized Ginzburg–Landau functionals. SIAM J. Math. Anal. 30(4), 721–746, 1999

  36. Khullar, S.: An experimental study of bubbles and droplets rising in a nematic liquid crystal. Master’s thesis, Faculty of Chemical and Biological Engineering, University of British Columbia, 2007

  37. Kléman, M., Lavrentovich , O.D.: Topological point defects in nematic liquid crystals. Philos. Mag. 86(25–26), 4117–4137, 2006

  38. Lavrentovich, Oleg, Pasini, Paolo, Zannoni, Claudio, Zumer, Slobodan: editors. Defects in Liquid Crystals: Computer Simulations, Theory and Experiments. Springer Netherlands, 2001.

  39. Loudet, J.C., Poulin, P.: Application of an electric field to colloidal particles suspended in a liquid-crystal solvent. Phys. Rev. Lett. 87(16), 165503, 2001

  40. Loudet, J.C., Mondain-Monval , O., Poulin , P.: Line defect dynamics around a colloidal particle. Eur. Phys. J. E 7(3), 205–208, 2002

  41. Machon, T., Aharoni , H., Hu , Y., Kamien , R.D.: Aspects of defect topology in smectic liquid crystals. Commun. Math. Phys. 372(2), 525–542, 2019

  42. Majumdar, A.: The radial-hedgehog solution in Landau–de Gennes’ theory for nematic liquid crystals. Eur. J. Appl. Math. 23(1), 61–97, 2012

  43. Majumdar, A.: Equilibrium order parameters of nematic liquid crystals in the Landau–de Gennes theory. Eur. J. Appl. Math. 21, 181–203, 2010

  44. Majumdar, A., Zarnescu , A.: Landau–de Gennes theory of nematic liquid crystals: the Oseen–Frank limit and beyond. Arch. Ration. Mech. Anal. 196(1), 227–280, 2009

  45. Mottram, N.J., Newton, C.J.P.: Introduction to Q-tensor theory. Working Paper, 2014

  46. Muševič, I.: Nematic liquid-crystal colloids. Materials 11(1), 24, 2018

  47. Priestley, E.B., Wojtowicz, P.J., Sheng, P.: Introduction to Liquid Crystals. Plenum Press, New York 1974

    Google Scholar 

  48. Rivière, T.: Everywhere discontinuous harmonic maps into spheres. Acta Math. 175(2), 197–226, 1995

  49. Sandier , E.: Lower bounds for the energy of unit vector fields and applications. J.Funct. Anal. 152(2), 379–403, 1998

  50. Stark, H.: Director field configurations around a spherical particle in a nematic liquid crystal. Eur. Phys. J. B 10(2), 311–321, 1999

  51. Tang, X., Selinger , J.V.: Orientation of topological defects in 2D nematic liquid crystals. Soft Matter 13(32), 5481–5490, 2017

  52. Virga, E.G.: Variational Theories for Liquid Crystals. Chapman and Hall, London 1994

    Book  Google Scholar 

  53. Vollmer, M.A.C.: Critical points and bifurcations of the three-dimensional Onsager model for liquid crystals. Arch. Ration. Mech. Anal. 226(2), 851–922, 2017

  54. Völtz, C., Maeda, Y. Tabe, Y., Yokoyama H.: Director-configurational transitions around microbubbles of hydrostatically regulated size in liquid crystals. Phys. Rev. Lett., 97(22), 227801, 2006

  55. Wang, X.: Wave Propagation in Liquid-Crystal Materials. Ph.D. thesis, Technische Universität, Darmstadt, 2014

  56. Yu, Y.: Disclinations in limiting Landau–de Gennes theory. Arch. Ration. Mech. Anal. 237(1), 147–200, 2020

    Article  MathSciNet  Google Scholar 

  57. Zhou, C., Yue , P., Feng , J.J.: The rise of Newtonian drops in a nematic liquid crystal. J. Fluid Mech. 593, 385–404, 2007

Download references

Acknowledgements

DS thanks Xavier Lamy for the useful discussions at several occasions. Most of this work was done while the second author was still with CMAP, CNRS and Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.

Funding

This study was funded by École Polytechnique and CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonin   Chambolle.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Communicated by E. Virga

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section we check that the two functions \(g_1\) and \(g_2\) as defined in (9) verify the assumptions on g, in particular (5), (6), (7) and (8). All calculations are straightforward.

Proposition A.1

(Properties of \(g_1\)) Let \(g_1\) be given as in (9). Then

  1. 1.

    If \(Q\in {\mathcal {N}}\) is given by \(Q=s_*({\mathbf{n}}\otimes {\mathbf{n}}- \frac{1}{3}{\mathrm{Id}})\) with \({\mathbf{n}}\in {\mathbb {S}}^2\), then

    $$\begin{aligned} g_1(Q) = s_*\left( 1 - {\mathbf{n}}_3^2\right) \, , \end{aligned}$$

    that is \(c_*^2=s_*\).

  2. 2.

    There exists a constant \(C>0\) such that for all \(Q\in {\mathrm{Sym}}_{0}\)

    $$\begin{aligned} |g_1(Q) - g_1({\mathcal {R}}(Q))| \leqq C\, {\mathrm{dist}}(Q,{\mathcal {N}})\, . \end{aligned}$$
    (68)
  3. 3.

    The function \(g_1\) satisfies the growth assumptions (5),(6) and is invariant by rotations around the \(e_3-\)axis. For fixed |Q|, \(g_1(Q)\) is minimal if \({\mathbf{e}}_3\) is the eigenvector corresponding to the maximal eigenvalue of Q. For \(Q=s(({\mathbf{e}}_3\otimes {\mathbf{e}}_3-\frac{1}{3}{\mathrm{Id}}) + r({\mathbf{m}}\otimes {\mathbf{m}}-\frac{1}{3}{\mathrm{Id}}))\) (using the notation of (4)), \(g_1(Q)\) is minimized for \(r=0\).

Proof

For \(Q=s_*({\mathbf{n}}\otimes {\mathbf{n}}- \frac{1}{3}{\mathrm{Id}})\) with \({\mathbf{n}}\in {\mathbb {S}}^2\) and \(s_*\geqq 0\) one easily checks that

$$\begin{aligned} g_1(Q)&= \frac{2}{3}s_* - s_*\Big ({\mathbf{n}}_3^2-\frac{1}{3}\Big ) = s_* - s_*{\mathbf{n}}_3^2\, . \end{aligned}$$

For the second assertion, we take a \(Q\in {\mathrm{Sym}}_{0}\) and use Proposition 2.3 to write

$$\begin{aligned} Q = s\left( \left( {\mathbf{n}}\otimes {\mathbf{n}}- \frac{1}{3}{\mathrm{Id}}\right) + r \left( {\mathbf{m}}\otimes {\mathbf{m}}- \frac{1}{3}{\mathrm{Id}}\right) \right) \, , \end{aligned}$$

with \(s>0\), \(0 \leqq r <1\) and \({\mathbf{n}},{\mathbf{m}}\) orthonormal eigenvectors of Q and \({\mathcal {R}}(Q) = s_* \left( {\mathbf{n}}\otimes {\mathbf{n}}- \frac{1}{3}{\mathrm{Id}}\right) \). Then we can estimate

$$\begin{aligned} |g_1(Q) - g_1({\mathcal {R}}(Q))|&= \Big |s\Big ({\mathbf{n}}_3^2-\frac{1}{3}\Big ) + sr\Big ({\mathbf{m}}_3^2-\frac{1}{3}\Big ) - s_*\Big ({\mathbf{n}}_3^2-\frac{1}{3}\Big )\Big | \\&\leqq |s-s_*|\Big |{\mathbf{n}}_3^2-\frac{1}{3}\Big | + |sr|\Big |{\mathbf{m}}_3^2-\frac{1}{3}\Big |\, . \end{aligned}$$

On the other hand, as in (38),

$$\begin{aligned} {\mathrm{dist}}^2(Q,{\mathcal {N}})&= |Q - {\mathcal {R}}(Q)|^2 \geqq \frac{1}{3}|s-s_*|^2 + \frac{1}{3}|sr|^2\, . \end{aligned}$$

Combining these two expressions, we find that

$$\begin{aligned} |g_1(Q) - g_1({\mathcal {R}}(Q))|&\leqq \frac{4}{\sqrt{3}}\,{\mathrm{dist}}(Q,{\mathcal {N}})\, , \end{aligned}$$

which completes the proof of the second assertion for the choice \(C=\frac{4}{\sqrt{3}}\).

The function \(g_1\) is smooth and obviously satisfies (5) and (6). Furthermore, since \(g_1\) only depends on \(Q_{33}\), it is invariant under rotations around the \({\mathbf{e}}_3-\)axis. Writing once again \(Q\in {\mathrm{Sym}}_{0}\) in the form of Proposition 2.3, we get

$$\begin{aligned} g_1(Q) \ = \ \frac{2}{3}s_* - s \Big (\Big ({\mathbf{n}}_3^2 - \frac{1}{3}\Big ) + r\Big ({\mathbf{m}}_3^2-\frac{1}{3}\Big )\Big )\, . \end{aligned}$$

For fixed \(s,r,{\mathbf{m}}\) this is minimized by \({\mathbf{n}}_3^2=1\), which corresponds to the principal eigenvector \({\mathbf{n}}\) equal to \({\mathbf{e}}_3\). We also see that for \({\mathbf{n}}={\mathbf{e}}_3\) and s fixed, g becomes minimal if \(r=0\), since \({\mathbf{m}}\perp {\mathbf{n}}\). \(\square \)

Proposition A.2

(Properties of \(g_2\)) Let \(g_2\) be given as in (9). Then

  1. 1.

    \(g_2(Q)\geqq 0\) for all \(Q\in {\mathrm{Sym}}_{0}\) with equality of and only if \(Q=t({\mathbf{e}}_3\otimes {\mathbf{e}}_3 - \frac{1}{3}{\mathrm{Id}})\) for some \(t\geqq 0\).

  2. 2.

    If \(Q\in {\mathcal {N}}\) is given by \(Q=s_*({\mathbf{n}}\otimes {\mathbf{n}}- \frac{1}{3}{\mathrm{Id}})\) with \({\mathbf{n}}\in {\mathbb {S}}^2\), then

    $$\begin{aligned} g_2(Q) = \sqrt{\frac{3}{2}}\left( 1 - {\mathbf{n}}_3^2\right) \, , \end{aligned}$$

    that is \(c_*^2=\sqrt{\frac{3}{2}}\).

  3. 3.

    There exist constants \(\delta _1,C>0\) such that if \(Q\in {\mathrm{Sym}}_{0}\) with \({\mathrm{dist}}(Q,{\mathcal {N}})\leqq \delta \) for \(0<\delta <\delta _1\), then

    $$\begin{aligned} |g_2(Q) - g_2({\mathcal {R}}(Q))| \leqq C\, {\mathrm{dist}}(Q,{\mathcal {N}})\, . \end{aligned}$$
    (69)
  4. 4.

    The function \(g_2\) satisfies the growth assumptions (5),(6) and is invariant by rotations around the \(e_3-\)axis. For fixed |Q|, \(g_2(Q)\) is minimal if \({\mathbf{e}}_3\) is the eigenvector corresponding to the maximal eigenvalue of Q. For \(Q=s(({\mathbf{e}}_3\otimes {\mathbf{e}}_3-\frac{1}{3}{\mathrm{Id}}) + r({\mathbf{m}}\otimes {\mathbf{m}}-\frac{1}{3}{\mathrm{Id}}))\) (using again the notation of (4)), \(g_2(Q)\) is minimized for \(r=0\).

Proof

Minimizing \(g_2\) under the tracelessness constraint, we get the necessary conditions

$$\begin{aligned} -\frac{1}{|Q|}+\frac{Q_{33}^2}{|Q|^3}-\lambda = 0\, , \quad \frac{Q_{33}Q_{jj}}{|Q|^3}-\lambda = 0 \text { for } j=1,2\, , \quad \frac{Q_{33}Q_{ij}}{|Q|^3} = 0 \text { for }i\ne j \end{aligned}$$

for a Lagrange multiplier \(\lambda \). For \(Q=0\) the claim is clear by definition. So let \(Q\in {\mathrm{Sym}}_{0}{\setminus }\{0\}\). If \(Q_{33}=0\) we get a contradiction. Hence we can assume \(Q_{33}\ne 0\). Then the third equation from above implies \(Q_{ij}=0\) for \(i\ne j\) and the second \(Q_{11}=Q_{22}\). By \({\mathrm{tr}}(Q)=0\), we have \(Q_{33}=-2Q_{11}\). Then the first equation reads \(0=\frac{3}{2}Q_{33}^2 - |Q|^2\), that is \(Q_{33}=\sqrt{2/3}|Q|\). Inserting this into \(g_2\) we get \(\min _{{\mathrm{Sym}}_{0}} g_2 = 0\). Our conditions also imply the claimed representation \(Q=t({\mathbf{e}}_3\otimes {\mathbf{e}}_3 - \frac{1}{3}{\mathrm{Id}})\). Reversely, it is obvious that \(g_2=0\) for such Q.

For the second claim, it is straightforward to check that for \(Q=s_*({\mathbf{n}}\otimes {\mathbf{n}}- \frac{1}{3}{\mathrm{Id}})\in {\mathcal {N}}\) we have \(|Q|^2=\frac{2}{3}s_*^2\). Thus

$$\begin{aligned} g_2(Q)&= \sqrt{\frac{2}{3}} - \frac{s_*({\mathbf{n}}_3^2-\frac{1}{3})}{\sqrt{\frac{2}{3}}s_*} = \sqrt{\frac{2}{3}} + \frac{1}{3}\sqrt{\frac{3}{2}} - \sqrt{\frac{3}{2}}{\mathbf{n}}_3^2 = \sqrt{\frac{3}{2}}\left( 1 - {\mathbf{n}}_3^2\right) \, . \end{aligned}$$

For the next property we use the same notation as before (from Proposition 2.3) to write

$$\begin{aligned} Q = s\left( \left( {\mathbf{n}}\otimes {\mathbf{n}}- \frac{1}{3}{\mathrm{Id}}\right) + r \left( {\mathbf{m}}\otimes {\mathbf{m}}- \frac{1}{3}{\mathrm{Id}}\right) \right) \, , \end{aligned}$$

with \(s>0\), \(0 \leqq r <1\) and \({\mathbf{n}},{\mathbf{m}}\) orthonormal eigenvectors of Q. From the second part of this proposition, we infer that \(g_2({\mathcal {R}}(Q)) = \sqrt{\frac{3}{2}}(1-{\mathbf{n}}_3^2)\). In order to calculate \(g_2(Q)\), we note that

$$\begin{aligned} |Q|^2&= s^2 \left| {\mathbf{n}}\otimes {\mathbf{n}}- \frac{1}{3}{\mathrm{Id}}\right| ^2 + (sr)^2 \left| {\mathbf{m}}\otimes {\mathbf{m}}- \frac{1}{3}{\mathrm{Id}}\right| ^2 + 2 s^2r\\&\left( {\mathbf{n}}\otimes {\mathbf{n}}- \frac{1}{3}{\mathrm{Id}}\right) :\left( {\mathbf{m}}\otimes {\mathbf{m}}- \frac{1}{3}{\mathrm{Id}}\right) \\&= \frac{2}{3} s^2 \left( r^2 - r +1 \right) \, . \end{aligned}$$

This implies

$$\begin{aligned} |g_2(Q) - g_2({\mathcal {R}}(Q))|&= \left| \sqrt{\frac{2}{3}} - \frac{s(n_3^2 - \frac{1}{3}) + sr(m_3^2-\frac{1}{3})}{\sqrt{\frac{2}{3}} s \sqrt{1-r+r^2}}\right. \\&\left. - \sqrt{\frac{2}{3}} + \frac{s_*(n_3^2-\frac{1}{3})}{s_* \sqrt{\frac{2}{3}}} \right| \\&\leqq \frac{n_3^2-\frac{1}{3}}{\sqrt{\frac{2}{3}}} \left( \frac{1}{\sqrt{1-r+r^2}} - 1\right) + \frac{m_3^2-\frac{1}{3}}{\sqrt{\frac{2}{3}}} \frac{r}{\sqrt{1-r+r^2}}\, . \end{aligned}$$

Note, that the Taylor expansion at \(r=0\) is given by \(\displaystyle {\frac{1}{\sqrt{1-r+r^2}} - 1} = \frac{r}{2} + {\mathcal {O}}(r^2)\) and \(\displaystyle {\frac{r}{\sqrt{1-r+r^2}} = r + {\mathcal {O}}(r^2)}\). Hence

$$\begin{aligned} |g_2(Q) - g_2({\mathcal {R}}(Q))| \leqq \frac{3}{2} r + {\mathcal {O}}(r^2)\, . \end{aligned}$$
(70)

As in Proposition A.1 we get that \({\mathrm{dist}}^2(Q,{\mathcal {N}})\geqq \frac{1}{3}|s-s_*|^2 + \frac{1}{3}|sr^2|\) and hence \(|s-s_*|\leqq \sqrt{3}\,{\mathrm{dist}}(Q,{\mathcal {N}})\) and \(\displaystyle {|r|\leqq \frac{\sqrt{3}\, {\mathrm{dist}}(Q,{\mathcal {N}})}{|s|}}\). We define \(\displaystyle {\delta _1 = \frac{1}{2\sqrt{3}}s_*}\) and together with (70) we get

$$\begin{aligned} |g_2(Q) - g_2({\mathcal {R}}(Q))| \leqq C r \leqq \frac{\sqrt{3}{\mathrm{dist}}(Q,{\mathcal {N}})}{|s|} \leqq C\frac{2\sqrt{3}}{s_*} {\mathrm{dist}}(Q,{\mathcal {N}})\, . \end{aligned}$$

It remains to prove the last assertion. Again the growth assumptions (5) and (6) are trivially satisfied. With the same arguments as in Proposition A.1 (since |Q| is fixed), we get that \(g_2(Q)\) is minimal for \({\mathbf{n}}={\mathbf{e}}_3\). Finally, we can compute

$$\begin{aligned} g_2\left( s\left( \left( {\mathbf{e}}_3\otimes {\mathbf{e}}_3-\frac{1}{3}{\mathrm{Id}}\right) + r\left( {\mathbf{m}}\otimes {\mathbf{m}}-\frac{1}{3}{\mathrm{Id}}\right) \right) \right) \ = \ \sqrt{\frac{2}{3}} - \frac{\frac{2}{3} s + sr\left( {\mathbf{m}}_3^2-\frac{1}{3}\right) }{\sqrt{\frac{2}{3}}s \sqrt{1-r+r^2}} \end{aligned}$$

and see that this is indeed minimal if \(r=0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

  Alouges, F.,   Chambolle, A. &   Stantejsky, D. The Saturn Ring Effect in Nematic Liquid Crystals with External Field: Effective Energy and Hysteresis. Arch Rational Mech Anal 241, 1403–1457 (2021). https://doi.org/10.1007/s00205-021-01674-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01674-z

Navigation