Skip to main content
Log in

A Variational Singular Perturbation Problem Motivated by Ericksen’s Model for Nematic Liquid Crystals

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the asymptotic behavior, when \(\varepsilon \rightarrow 0\), of the minimizers \(\{u_\varepsilon \}_{\varepsilon >0}\) for the energy

$$\begin{aligned} E_\varepsilon (u)=\int _{\Omega }\Big (|\nabla u|^2+\big (\frac{1}{\varepsilon ^2}-1\big )|\nabla |u||^2\Big ), \end{aligned}$$

over the class of maps \(u\in H^1(\Omega ,{{\mathbb {R}}}^2)\) satisfying the boundary condition \(u=g\) on \(\partial \Omega \), where \(\Omega \) is a smooth, bounded and simply connected domain in \({{\mathbb {R}}}^2\) and \(g:\partial \Omega \rightarrow S^1\) is a smooth boundary data of degree \(D\ge 1\). The motivation comes from a simplified version of the Ericksen model for nematic liquid crystals with variable degree of orientation. We prove convergence (up to a subsequence) of \(\{u_\varepsilon \}\) towards a singular \(S^1\)–valued harmonic map \(u_*\), a result that resembles the one obtained in Bethuel et al. (Ginzburg–Landau Vortices, Birkhäuser, 1994) for an analogous problem for the Ginzburg–Landau energy. There are however two striking differences between our result and the one involving the Ginzburg–Landau energy. First, in our problem, the singular limit \(u_*\) may have singularities of, degree strictly larger than one. Second, we find that the principle of “equipartition” holds for the energy of the minimizers, i.e., the contributions of the two terms in \(E_\varepsilon (u_\varepsilon )\) are essentially equal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alper, O.: Rectifiability of line defects in liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 228, 309–339, 2018

    Article  MathSciNet  Google Scholar 

  2. Alper, O., Hardt, R., Lin, F.H.: Defects of liquid crystals with variable degree of orientation, Calc. Var. Partial Differ. Equ. 56 2017, Art. 128, 32 pp.

  3. Ambrosio, L., Virga, E.G.: A boundary-value problem for nematic liquid crystals with a variable degree of orientation. Arch. Rat. Mech. Anal. 114, 335–347, 1991

    Article  MathSciNet  Google Scholar 

  4. André, N., Shafrir, I.: On a singular perturbation problem involving the distance to a curve. J. Anal. Math. 90, 337–396, 2003

    Article  MathSciNet  Google Scholar 

  5. Bauman, P., Park, J., Phillips, D.: Analysis of nematic liquid crystals with disclination lines. Arch. Rat. Mech. Anal. 205, 795–826, 2012

    Article  MathSciNet  Google Scholar 

  6. Bethuel, F., Brezis, H., Coleman, B., Hélein, F.: Bifurcation analysis for minimizing harmonic maps describing the equilibrium of nematic phases between cylinders. Arch. Rat. Mech. Anal. 118, 149–168, 1992

    Article  MathSciNet  Google Scholar 

  7. Bethuel, F., Brezis, H., Hélein, F.: Asymptotics for the minimization of a Ginzburg–Landau functional. Calc. Var. Partial Differ. Equ. 1, 123–148, 1993

    Article  MathSciNet  Google Scholar 

  8. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau Vortices. Birkhäuser, Cham 1994

    Book  Google Scholar 

  9. Comte, M., Mironescu, P.: Minimizing properties of arbitrary solutions to the Ginzburg–Landau equation. Proc. Roy. Soc. Edinburgh Sect. A 129, 1157–1169, 1999

    Article  MathSciNet  Google Scholar 

  10. Ericksen, J.: Liquid crystals with variable degree of orientation. Arch. Rat. Mech. Anal. 113, 97–120, 1990

    Article  MathSciNet  Google Scholar 

  11. Fonseca, I., Tartar, L.: The gradient theory of phase transitions for systems with two potential wells. Proc. Roy. Soc. Edinburgh Sect. A 111, 89–102, 1989

    Article  MathSciNet  Google Scholar 

  12. Hang, F.B., Lin, F.H.: Static theory for planar ferromagnets and antiferromagnets. Acta Math. Sin. 17, 541–580, 2001

    Article  MathSciNet  Google Scholar 

  13. Hardt, R., Lin, F.H.: Harmonic maps into round cones and singularities of nematic liquid crystals. Math. Z. 213, 575–593, 1993

    Article  MathSciNet  Google Scholar 

  14. Hardt, R., Lin, F.H.: Singularities for p-energy minimizing unit vectorfields on planar domains. Calc. Var. Partial Differ. Equ. 3, 311–341, 1995

    Article  MathSciNet  Google Scholar 

  15. Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: On the uniqueness of minimisers of Ginzburg-Landau functionals. Ann. Sci. Éc. Norm. Supér. 4(53), 589–613, 2020

    Article  MathSciNet  Google Scholar 

  16. Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Symmetry and multiplicity of solutions in a two-dimensional Landau-de Gennes model for liquid crystals. Arch. Ration. Mech. Anal. 237, 1421–1473, 2020

    Article  MathSciNet  Google Scholar 

  17. Lefter, C., Rădulescu, V.: Minimization problems and corresponding renormalized energies. Differ. Integr. Equ. 9, 903–917, 1996

    MathSciNet  MATH  Google Scholar 

  18. Lin, F.H.: Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Comm. Pure Appl. Math. 42, 789–814, 1989

    Article  MathSciNet  Google Scholar 

  19. Lin, F.H.: On nematic liquid crystals with variable degree of orientation. Comm. Pure Appl. Math. 44, 453–468, 1991

    Article  MathSciNet  Google Scholar 

  20. Mironescu, P., Shafrir, I.: Asymptotic behavior of critical points of an energy involving a loop-well potential. Comm. Partial Differ. Equ. 42, 1837–1870, 2017

    Article  MathSciNet  Google Scholar 

  21. Mizel, V.J., Roccato, D., Virga, E.G.: A variational problem for nematic liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 116, 115–138, 1991

    Article  MathSciNet  Google Scholar 

  22. Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98, 123–142, 1987

    Article  ADS  MathSciNet  Google Scholar 

  23. Modica, L., Mortola, S.: Un esempio di \(\Gamma \)-convergenza Boll. Un. Mat. It. B 14, 285–299, 1977

    MATH  Google Scholar 

  24. Nochetto, R., Walker, S., Zhang, W.: A finite element method for nematic liquid crystals with variable degree of orientation. SIAM J. Numer. Anal. 55, 1357–1386, 2017

    Article  MathSciNet  Google Scholar 

  25. Sandier, É., Shafrir, I.: On the symmetry of minimizing harmonic maps in N dimensions. Differ. Integr. Equ. 6, 1531–1541, 1993

    MathSciNet  MATH  Google Scholar 

  26. Sternberg, P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101, 209–260, 1988

    Article  MathSciNet  Google Scholar 

  27. Struwe, M.: On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, Differ. Integr. Equ. 7, 1613–1624, 1994 [Erratum: 8, 224 (1995)].

  28. Virga, E.G.: Disclinations and hedgehogs in nematic liquid crystals with variable degree of orientation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1, 275–280, 1990.

Download references

Acknowledgements

The research of the first author (DG) was supported in part by the NSF grant DMS-1615952. The research of the second author (IS) was supported by the Israel Science Foundation (Grant No. 894/18). We thank the anonymous referees for their valuable comments and suggestions that helped us to improve the presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itai Shafrir.

Additional information

Communicated by S. Serfaty

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovaty, D., Shafrir, I. A Variational Singular Perturbation Problem Motivated by Ericksen’s Model for Nematic Liquid Crystals. Arch Rational Mech Anal 241, 1009–1063 (2021). https://doi.org/10.1007/s00205-021-01670-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01670-3

Navigation