Skip to main content
Log in

Convergence of Viscosity Solutions of Generalized Contact Hamilton–Jacobi Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

For any compact connected manifold M, we consider the generalized contact Hamiltonian H(xpu) defined on \(T^*M\times \mathbb {R}\) which is convex in p and monotonically increasing in u. Let \(u_\varepsilon ^-:M\rightarrow \mathbb {R}\) be the viscosity solution of the parametrized contact Hamilton–Jacobi equation

$$\begin{aligned} H(x,d_x u_\varepsilon ^-(x),\varepsilon u_\varepsilon ^-(x))=c(H), \end{aligned}$$

with c(H) being the Mañé Critical Value. We prove that \(u_\varepsilon ^-\) converges uniformly, as \(\varepsilon \rightarrow 0_+\), to a specific viscosity solution \(u_0^-\) of the critical equation

$$\begin{aligned} H(x,d_x u_0^-(x),0)=c(H), \end{aligned}$$

which can be characterized as a minimal combination of the associated Peierls barrier functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barles, G.: Solutions de viscosité des équations de Hamilton–Jacobi, Volume 17 of Mathématiques & Applications. Springer, Paris 1994

    MATH  Google Scholar 

  2. Bravetti, A.: Contact hamiltonian dynamics: the concept and its use. Entropy 19(10), 535, 2017. https://doi.org/10.3390/e19100535

    Article  ADS  MathSciNet  Google Scholar 

  3. Bravetti, A., Cruz, H., Tapias, D.: Contact hamiltonian mechanics. Ann. Phys. 376, 17–39, 2017. https://doi.org/10.1016/j.aop.2016.11.003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Calleja, R., Celletti, A., De la Llave, R.: A kam theory for conformally symplectic systems: efficient algorithms and their validation. J. Differ. Equ. 5, 09, 2013. https://doi.org/10.1016/j.jde.2013.05.001

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Q., Cheng, W., Ishii, H., Zhao, K.: Vanishing contact structure problem and convergence of the viscosity solutions. Commun. Partial Differ. Equ. 44(9), 801–836, 2019. https://doi.org/10.1080/03605302.2019.1608561

    Article  MathSciNet  MATH  Google Scholar 

  6. Crandall, M., Evans, L., Lions, P.: Some properties of viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 282(2), 487–502, 1984. https://doi.org/10.2307/1999247

    Article  MathSciNet  MATH  Google Scholar 

  7. Davini, A., Fathi, A., Iturriaga, R., Zavidovique, M.: Convergence of the solutions of the discounted Hamilton–Jacobi equation: convergence of the discounted solutions. Invent. Math. 206(1), 29–55, 2016. https://doi.org/10.1007/s00222-016-0648-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Fathi, A.: Weak KAM Theorem in Lagrangian Dynamics, Version 7. Cambridge University Press, Cambridge 2005

    Google Scholar 

  9. Fathi, A., Siconolfi, A.: PDE aspects of Aubry–Mather theory for quasiconvex Hamiltonians. Calc. Var. Partial Differ. Equ. 22(2), 185–228, 2005. https://doi.org/10.1007/s00526-004-0271-z

    Article  MathSciNet  MATH  Google Scholar 

  10. Lions, P.-L.: Generalized Solutions of Hamilton–Jacobi Equations, Volume 69 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston 1982

    Google Scholar 

  11. Mañé, R.: Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9(2), 273–310, 1996. https://doi.org/10.1088/0951-7715/9/2/002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Marò, S., Sorrentino, A.: Aubry-mather theory for conformally symplectic systems. Commun. Math. Phys. 354, 775–808, 2017. https://doi.org/10.1007/s00220-017-2900-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Su, X., Wang, L., Yan, J.: Weak KAM theory for Hamilton–Jacobi equations depending on unknown functions. Discrete Contin. Dyn. Syst. 36(11), 6487–6522, 2016. https://doi.org/10.3934/dcds.2016080

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, K., Wang, L., Yan, J.: Aubry–Mather theory for contact Hamiltonian systems. Commun. Math. Phys. 366(3), 981–1023, 2019. https://doi.org/10.1007/s00220-019-03362-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The Ya-Nan Wang is supported by National Natural Science Foundation of China (Grant No.11501437) and China Postdoctoral Science Foundation (No. 2017M611439). The Jun Yan is supported by National Natural Science Foundation of China (Grant Nos. 11631006 and 11790272) and Shanghai Science and Technology Commission (Grant No. 17XD1400500). The Jianlu Zhang is supported by the National Natural Science Foundation of China (Grant No. 11901560). All the authors are grateful to Prof. Wei Cheng for helpful discussion about the details. We are also appreciated with the anonymous referees for revised suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlu Zhang.

Additional information

Communicated by P.-L. Lions.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The Proof of Lemma 2.3

Appendix A: The Proof of Lemma 2.3

For any \(\varepsilon \in (0,1]\) and \(\phi \in C^0(M,\mathbb {R})\), we have

$$\begin{aligned} \mathcal {T}^{\varepsilon -}_t\phi (x)=\inf _{\gamma (t)=x}\bigg \{\phi (\gamma (0))+\int ^t_0L(\gamma (s),\dot{\gamma }(s),\varepsilon \mathcal {T}^{\varepsilon -}_s\phi (\gamma (s)))+c(H)\,\mathrm{d}s\bigg \}, \end{aligned}$$

implicitly defined, with the infimum taken among all piecewise \(C^1\) curve. Furthermore, for each \(\phi \in C(M,\mathbb {R})\),

$$\begin{aligned} \lim _{t\rightarrow +\infty }\mathcal {T}^{\varepsilon -}_t\phi (x)=u^-_{\varepsilon }(x), \end{aligned}$$

where \(u_\varepsilon ^-\) is the unique weak KAM solution of \(H(x,\partial _xu_{\varepsilon }^-,\varepsilon u_{\varepsilon }^-)=c(H)\), see Theorem 1.4 in [13] and Appendix B in [14]. Now we are ready to give a proof of Lemma 2.3.

Lemma A.1

For any \(\phi \in C(M,\mathbb {R})\) with \(\Vert \phi \Vert \leqq 1\), the family \(\{\mathcal {T}^{\varepsilon -}_t\phi (\cdot )|\varepsilon \in (0,1],t\geqq 1\}\) is uniformly bounded.

Proof

We claim that \(\{\mathcal {T}^{\varepsilon -}_t\phi (\cdot )|\varepsilon \in (0,1],t\geqq 1\}\) is uniformly bounded from below. Without loss of generality, we assume \(\mathcal {T}^{\varepsilon -}_t\phi (x)<0\) for some \(\varepsilon \in (0,1]\) and \((x,t)\in M\times [1,+\infty )\), otherwise 0 would be a lower bound of the family. Let \(\gamma _{x,\varepsilon }:[0,t]\rightarrow M\) be the associated minimizer of \(\mathcal {T}^{\varepsilon -}_t\phi (x)\). Then, there are two probabilities:

Case I There exists \(s_0\in [0,t)\) such that \(\mathcal {T}^{\varepsilon -}_{s_0}\phi (\gamma _{x,\varepsilon }(s_0))=0\) and \(\mathcal {T}^{\varepsilon -}_{s}\phi (\gamma _{x,\varepsilon }(s))<0, s\in (s_0,t]\).

Case II \(\mathcal {T}^{\varepsilon -}_s\phi (\gamma _{x,\varepsilon }(s))<0\) for all \(s\in [0,t]\).

      For Case I, due to (H3), L is strictly decreasing of u. Therefore,

$$\begin{aligned} \mathcal {T}^{\varepsilon -}_t\phi (x)&=\mathcal {T}^{\varepsilon -}_{s_0}\phi (\gamma _{x,\varepsilon }(s_0))+\int ^t_{s_0}L(\gamma _{x,\varepsilon }(s),\dot{\gamma }_{x,\varepsilon }(s),\varepsilon \mathcal {T}^{\varepsilon -}_s\phi (\gamma _{x,\varepsilon }(s)))+c(H)\,\mathrm{d}s\\&\geqq \int ^t_{s_0}L(\gamma _{x,\varepsilon }(s),\dot{\gamma }_{x,\varepsilon }(s),0)+c(H)\,\mathrm{d}s\\&\geqq h^{t-s_0}(\gamma _{x,\varepsilon }(s_0),x)+c(H)(t-s_0). \end{aligned}$$

It is well known that \(h^{t-s_0}(\gamma _{x,\varepsilon }(s_0),x)+c(H)(t-s_0)\) is uniformly bounded from below (see Lemma 5.3.2 in [8] for instance). Moreover, the lower bound can be made independent of the selection of \(\varepsilon \in (0,1]\) and \((x,t-s_0)\in M\times (0,+\infty )\).

For Case II,

$$\begin{aligned} \mathcal {T}^{\varepsilon -}_t\phi (x)&=\phi (\gamma _{x,\varepsilon }(0))+\int ^t_{0}L(\gamma _{x,\varepsilon }(s),\dot{\gamma }_{x,\varepsilon }(s),\varepsilon \mathcal {T}^{\varepsilon -}_s\phi (\gamma _{x,\varepsilon }(s)))+c(H)\,\mathrm{d}s\\&\geqq \min _{x\in M}\phi (x)+\int ^t_{0}L(\gamma _{x,\varepsilon }(s),\dot{\gamma }_{x,\varepsilon }(s),0)+c(H)\,\mathrm{d}s\\&\geqq -1+h^t(\gamma _{x,\varepsilon }(0),x)+c(H)t. \end{aligned}$$

Hence, \(\{\mathcal {T}^{\varepsilon -}_t\phi (\cdot )|\varepsilon \in (0,1]\}\) is bounded from below. Still the lower bound is independent of the selection of \(\varepsilon \in (0,1]\) and \((x,t)\in M\times [1,+\infty )\).

      As a summary, the family \(\{\mathcal {T}^{\varepsilon -}_t\phi (\cdot )|\varepsilon \in (0,1],t\geqq 1\}\) is uniformly bounded from below.

      We claim \(\{\mathcal {T}^{\varepsilon -}_t\phi (\cdot )|\varepsilon \in (0,1],t\geqq 1\}\) is uniformly bounded from above. Without loss of generality, we assume \(\mathcal {T}^{\varepsilon -}_t\phi (x)>0\) for some \(\varepsilon \in (0,1]\) and \((x,t)\in M\times [1,+\infty )\), otherwise 0 is a upper bound of \(\{\mathcal {T}^{\varepsilon -}_t\phi (\cdot )|\varepsilon \in (0,1],t\geqq 1\}\). Let \(\beta :[0,t]\rightarrow M\) be the associated minimizer of \(h^t(\gamma _{x,\varepsilon }(0),x)\), i.e.,

$$\begin{aligned} h^t(\gamma _{x,\varepsilon }(0),x)=\int ^t_0L(\beta (s),\dot{\beta }(s),0)\,\mathrm{d}s. \end{aligned}$$

There are also two probabilities:

Case I’ \(\mathcal {T}^{\varepsilon -}_s\phi (\beta (s))>0\) for each \(s\in [0,t]\). Hence,

$$\begin{aligned} \mathcal {T}^{\varepsilon -}_t\phi (x)&\leqq \phi (\beta (0))+\int ^t_0L(\beta (s),\dot{\beta }(s),\varepsilon \mathcal {T}^{\varepsilon -}_s\phi (\beta (s)))+c(H)\,\mathrm{d}s\\&\leqq \max _{x\in M}\phi (x)+\int ^t_0L(\beta (s),\dot{\beta }(s),0)+c(H)\,\mathrm{d}s\\&\leqq 1+h^t(\gamma _{x,\varepsilon }(0),x)+c(H)t. \end{aligned}$$

Since \(t\geqq 1\), \(h^t(\gamma _{x,\varepsilon }(0),x)+c(H)t\) is bounded from above. Hence, \(\{\mathcal {T}^{\varepsilon -}_t\phi (\cdot )|\varepsilon \in (0,t],t\geqq 1\}\) is uniformly bounded from above.

Case II’ There exists \(s_1\in [0,t)\) such that \(\mathcal {T}^{\varepsilon -}_{s_1}\phi (\beta (s_1))=0\) and \(\mathcal {T}^{\varepsilon -}_s\phi (\beta (s))>0,s\in (s_1,t]\). Then,

$$\begin{aligned} \mathcal {T}^{\varepsilon -}_t\phi (x)&\leqq \mathcal {T}^{\varepsilon -}_{s_1}\phi (\beta (s_1))+\int ^t_{s_1}L(\beta (s),\dot{\beta }(s),\varepsilon \mathcal {T}^{\varepsilon -}_s\phi (\beta (s)))+c(H)\,\mathrm{d}s\\&\leqq \int ^t_{s_1}L(\beta (s),\dot{\beta }(s),0)+c(H)\,\mathrm{d}s\\&=h^{t-s_1}(\beta (s_1),x)+c(H)(t-s_1). \end{aligned}$$

      If \(t-s_1\geqq \frac{1}{2}\), then \(h^{t-s_1}(\beta (s_1),x)+c(H)(t-s_1)\) is bounded from above. If not, then \(s_1>\frac{1}{2}\). Note that

$$\begin{aligned} h^t(\gamma _{x,\varepsilon }(0),x)=h^{s_1}(\gamma _{x,\varepsilon }(0),\beta (s_1))+h^{t-s_1}(\beta (s_1),x). \end{aligned}$$

We derive that

$$\begin{aligned}&h^{t-s_1}(\beta (s_1),x)+c(H)(t-s_1)=\bigg (h^t(\gamma _{x,\varepsilon }(0),x)+c(H)t\bigg )\\&\quad -\bigg (h^{s_1}(\gamma _{x,\varepsilon }(0),\beta (s_1))+c(H)s_1\bigg ), \end{aligned}$$

      Note that the first term is bounded from above (\(t\geqq 1\)) and the second term is bounded from below (\(s_1> 1/2\)), see Lemma 5.3.2 in [8]. Hence, \(\{\mathcal {T}^{\varepsilon -}_t\phi (\cdot )|\varepsilon \in (0,1],t\geqq 1\}\) is uniformly bounded from above. \(\square \)

Lemma A.2

The family \(\{u_\varepsilon ^-\}\) is uniformly bounded for all \(\varepsilon \in (0,1]\).

Proof

Due to the boundedness of \(\{\mathcal {T}^{\varepsilon -}_t\phi (\cdot )|\varepsilon \in (0,1],t\geqq 1\}\), there exists a \(K>0\) such that for \(\phi \in C(M,\mathbb {R})\) satisfying \(\Vert \phi \Vert \leqq 1\),

$$\begin{aligned} |\mathcal {T}^{\varepsilon -}_t\phi (x)|\leqq K, (x,t)\in M\times [1,+\infty ) \text{ and } \varepsilon \in (0,1]. \end{aligned}$$

Since \(\lim _{t\rightarrow +\infty }\mathcal {T}^{\varepsilon -}_t\phi (x)=u_{\varepsilon }^{-}(x)\) is uniquely established, we get \(|u^-_\varepsilon (x)|\leqq K\) for all \(\varepsilon \in (0,1]\), immediately. \(\square \)

Lemma A.3

The map \(x \rightarrow u_{\varepsilon }^-(x)\) is equi-Lipschitz for \(\varepsilon \in (0,1]\).

Proof

Let \(x,y\in M\) and \(\alpha :[0,d_R(x,y)]\rightarrow M\) be a geodesic connecting x and y. Note that \(\sqrt{\langle \dot{\alpha },\dot{\alpha }\rangle }_R\leqq 1\), where \(\langle \cdot ,\cdot \rangle _R\) is the Riemannian metric on M. We derive that

$$\begin{aligned} u^-_{\varepsilon }(y)-u^-_{\varepsilon }(x)&\leqq \int ^{d_R(x,y)}_0L(\alpha (s),\dot{\alpha }(s),\varepsilon u^-_{\varepsilon }(\alpha (s)))+c(H)\,\mathrm{d}s\\&\leqq \int ^{d_R(x,y)}_0L(\alpha (s),\dot{\alpha }(s),0)+\Delta \cdot K+c(H)\,\mathrm{d}s\\&\leqq (C_1+\Delta \cdot K+c(H))d_R(x,y), \end{aligned}$$

where \(C_1\) is a uniform constant such that

$$\begin{aligned} L(x,v,0)\leqq C_1,\quad \forall \Vert v\Vert _R\leqq 1. \end{aligned}$$

By switching the role of x and y, we derive

$$\begin{aligned} u^-_{\varepsilon }(x)-u^-_{\varepsilon }(y)\leqq (C_1+\Delta \cdot K+c(H))d_R(x,y), \end{aligned}$$

and then

$$\begin{aligned} |u^-_{\varepsilon }(x)-u^-_{\varepsilon }(y)|\leqq (C_1+\Delta \cdot K+c(H))d_R(x,y), \end{aligned}$$

This finishes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YN., Yan, J. & Zhang, J. Convergence of Viscosity Solutions of Generalized Contact Hamilton–Jacobi Equations. Arch Rational Mech Anal 241, 885–902 (2021). https://doi.org/10.1007/s00205-021-01667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01667-y

Navigation