Skip to main content
Log in

Singularities and unsteady separation for the inviscid two-dimensional Prandtl system

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the inviscid unsteady Prandtl system in two dimensions, motivated by the fact that it should model to leading order separation and singularity formation for the original viscous system. We give a sharp expression for the maximal time of existence of regular solutions, showing that singularities only happen at the boundary or on the set of zero vorticity, and that they correspond to boundary layer separation. We then exhibit new Lagrangian formulae for backward self-similar profiles, and study them also with a different approach that was initiated by Elliott–Smith–Cowley and Cassel–Smith–Walker. One particular profile is at the heart of the so-called Van-Dommelen and Shen singularity, and we prove its generic appearance (that is, for an open and dense set of blow-up solutions) for any prescribed Eulerian outer flow. We comment on the connection between these results and the full viscous Prandtl system. This paper combines ideas for transport equations, such as Lagrangian coordinates and incompressibility, and for singularity formation, such as self-similarity and renormalisation, in a novel manner, and designs a new way to study singularities for quasilinear transport equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The MRS conditions are satisfied because of Definition 1.1 and because \(\partial _y u_0(X_0,Y_0)=0\) from (1.9) so that \(\partial _y u(t,x(t),y(t))=0\) by conservation of vorticity. There is a Burgers type compression because \(\partial _x u(t,x(t),y(t))\rightarrow -\infty \) as \(t\rightarrow T_a\) since the third equation in (1.8) becomes singular from the definition of \(T_a\).

  2. The condition \({\mathcal {Y}}<(2-\epsilon ){\mathcal {Y}}^*\) ensures both quantities \(\Theta ({\mathcal {X}},{\mathcal {Y}})\) and \(\varphi _{\pm \infty } ({\mathcal {Y}}|{\mathcal {X}}|^{1/6})\) are defined. Note that on \([(2-\epsilon ){\mathcal {Y}}^*,2{\mathcal {Y}}^*)\) the asymptotics (1.25) prevails.

  3. For example, \(d_{C^k_{\text {loc}}} (u_0,u_0')= \sum _{l=0}^k \sum _{n=1}^\infty 2^{-n} \min (\Vert \nabla ^l (u_0-u_0')\Vert _{L^{\infty } ({\mathcal {K}}_n)},1)\) with \({\mathcal {K}}_n=\{(x,y)\in {\mathcal {H}}, \ |x|\leqq n \text{ and } |y|\leqq n\}\). Another choice for the covering of compact sets \(({\mathcal {K}}_n)_n\) would yield an equivalent distance.

  4. Where for \(z\geqq 0\) and \(z'>0\), we write \(z=kz' +z \text{ mod } z'\), \(k\in {\mathbb {N}}\), \(0\leqq z \text{ mod } z'<z'\). At each fixed \({\mathcal {X}}\), this is a periodic extension along \({\mathcal {Y}}\) with period \(2 {\mathcal {Y}}^{'*}({\mathcal {X}})\).

  5. Up to a fixed self-similar factor \(\left( 1-\frac{t}{T} \right) ^{-2}\)

  6. The mapping \(({\mathcal {X}},{\mathcal {Y}})\mapsto (a,b)\) will be showed to be close to the mapping \(({\mathcal {X}},{\mathcal {Y}})\mapsto ({\mathcal {a}},{\mathcal {b}})=\Phi ^{-1}({\mathcal {X}},{\mathcal {Y}})\) given by the inverse of \(\Phi \) defined in (1.17), hence this (ab) notation.

  7. We abuse notations, since variables also called (ab) were introduced in Subsection 3 to study the profile \(\Theta \). Our proof shows that these variables become asymptotically equivalent as \(t\uparrow T\), justifying this abuse.

  8. We recall that the value \(\iota =1\) has been ensured by the sign assumption (5.1), see the comments there.

  9. Note that in this second subcase, for K large, from (5.11) one has necessarily \(|a|\approx |b|^{2/3}\gg 1\).

References

  1. Ackroyd, J.A.D., Axcell, B.P., Ruban, A.: Early developments of modern aerodynamics

  2. Alexandre, R., Wang, Y.G., Xu, C.J., Yang, T.: Well-posedness of the Prandtl equation in Sobolev spaces. J.A.M.S 28(3), 745–784, 2015

  3. Brenier, Y.: Homogeneous hydrostatic flows with convex velocity profiles. Nonlinearity 12(3), 495, 1999

    Article  ADS  MathSciNet  Google Scholar 

  4. Cassel, K.W., Smith, F.T., Walker, J.D.A.: The onset of instability in unsteady boundary-layer separation. J. Fluid Mech. 315, 223–256, 1996

    Article  ADS  Google Scholar 

  5. Cassel, K.W., Conlisk, A.T.: Unsteady separation in vortex-induced boundary layers. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372(2020), 20130348, 2014

  6. Collot, C., Ghoul, T.-E., Slim, I., Masmoudi, N.: On singularity formation for the two dimensional unsteady Prandtl’s system

  7. Collot, C., Ghoul, T.-E., Masmoudi, N.: Singularity formation for burgers equation with transverse viscosity

  8. Cowley, S.J., Van Dommelen, L.L., Lam, S.T.: On the use of Lagrangian variables in descriptions of unsteady boundary-layer separation. Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 333(1631), 343–378, 1990

  9. Dalibard, A.L., Masmoudi, N.: Separation for the stationary Prandtl equation

  10. Della Rocca, G., Lombardo, M.C., Sammartino, M., Sciacca, V.: Singularity tracking for Camassa- -Holm and Prandtl’s equations. Appl. Numer. Math. 56(8), 1108–1122, 2006

    Article  MathSciNet  Google Scholar 

  11. Dietert, H., Gerard-Varet, D.: Well-posedness of the Prandtl equation without any structural assumption. 2018. arXiv preprint arXiv:1809.11004

  12. Weinan, E., Bjorn, E.: Blowup of solutions of the unsteady Prandtl’s equation. Commun. Pure Appl. Math. 50(12), 1287–1293, 1997

    Article  MathSciNet  Google Scholar 

  13. Elliott, J.W., Smith, F.T., Cowley, S.J.: Breakdown of boundary layers: (i) on moving surfaces; (ii) in semisimilar unsteady flow; (iii) in fully unsteady flow. Geophys. Astrophys. Fluid Dyn. 25(1–2), 77–138, 1983

    Article  ADS  MathSciNet  Google Scholar 

  14. Gargano, F., Sammartino, M., Sciacca, V.: Singularity formation for Prandtl’s equations. Physica D Nonlinear Phenom. 238(19), 1975–1991, 2009

    Article  ADS  MathSciNet  Google Scholar 

  15. Gérard-Varet, D., Maekawa, Y., Masmoudi, N.: Gevrey stability of Prandtl expansions for 2d Navier– –Stokess. 2016. arXiv:1607.06434

  16. Gérard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609, 2010

    Article  MathSciNet  Google Scholar 

  17. Goldstein, S.: On laminar boundary-layer flow near a position of separation. Q. J. Mech. Appl. Math. 1(1), 43–69, 1948

    Article  MathSciNet  Google Scholar 

  18. Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of general symmetric shear flows in a two-dimensional channel. Adv. Math. 292, 52–110, 2016

    Article  MathSciNet  Google Scholar 

  19. Grenier, E.: On the derivation of homogeneous hydrostatic equations. ESAIM Math. Model. Numer. Anal. 33(5), 965–970, 1999

    Article  MathSciNet  Google Scholar 

  20. Grenier, E.: On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. (Journal Issued by the Courant Institute of Mathematical Sciences) 53(9), 1067–1091, 2000

    MathSciNet  MATH  Google Scholar 

  21. Hong, L., Hunter, J.K.: Singularity formation and instability in the unsteady inviscid and viscous Prandtl equations. Commun. Math. Sci. 1(2), 293–316, 2003

    Article  MathSciNet  Google Scholar 

  22. Kukavica, I., Vicol, V.: On the local existence of analytic solutions to the Prandtl boundary layer equations. Commun. Math. Sci. 11(1), 269–292, 2013

    Article  MathSciNet  Google Scholar 

  23. Kukavica, I., Vicol, V., Wang, F.: The van Dommelen and Shen singularity in the Prandtl equations. Adv. Math. 307, 288–311, 2017

    Article  MathSciNet  Google Scholar 

  24. Lombardo, M.C., Cannone, M., Sammartino, M.: Well-posedness of the boundary layer equations. SIAM J. Math. Anal. 35(4), 987–1004, 2003

    Article  MathSciNet  Google Scholar 

  25. Maekawa, Y.: On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Commun. Pure Appl. Math. 67(7), 1045–1128, 2014

    Article  MathSciNet  Google Scholar 

  26. Masmoudi, N., Wong, T.K.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure Appl. Math. 68(10), 1683–1741, 2015

    Article  MathSciNet  Google Scholar 

  27. Moore, F.K.: On the separation of the unsteady laminar boundary layer. In: Grenzschichtforschung/Boundary Layer Research, pp. 296–311. Springer, 1958

  28. Oleĭnik, O.A.: On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid. J. Appl. Math. Mech. 30(951–974), 1967, 1966

    MathSciNet  Google Scholar 

  29. Prandtl, L.: Über flussigkeitsbewegung bei sehr kleiner reibung. Verhandl. III, Internat. Math.-Kong., Heidelberg, Teubner, Leipzig, 1904, pp. 484–491, 1904

  30. Rott, N.: Unsteady viscous flow in the vicinity of a stagnation point. Q. Appl. Math. 13(4), 444–451, 1956

    Article  MathSciNet  Google Scholar 

  31. Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions, of the Navier–Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433–461, 1998

  32. Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions of the Navier– –Stokes equation on a half-space. II. Construction of the Navier– –Stokes solution. Commun. Math. Phys. 192(2), 463–491, 1998

  33. Schlichting, H., Gersten, K.: Boundary-Layer Theory. Springer, Berlin 2016

    MATH  Google Scholar 

  34. Sears, W.R.: Some recent developments in airfoil theory. J. Aeronaut. Sci. 23(5), 490–499, 1956

    Article  MathSciNet  Google Scholar 

  35. Sears, W.R., Telionis, D.P.: Boundary-layer separation in unsteady flow. SIAM J. Appl. Math. 28(1), 215–235, 1975

    Article  ADS  Google Scholar 

  36. van Dommelen, L.L., Shen, S.F.: The spontaneous generation of the singularity in a separating laminar boundary layer. J. Comput. Phys. 38(2), 125–140, 1980

    Article  ADS  MathSciNet  Google Scholar 

  37. Van Dommelen, L.L., Cowley, S.J.: On the Lagrangian description of unsteady boundary-layer separation. Part 1. General theory. J. Fluid Mech. 210, 593–626, 1990

  38. Van Dommelen, L.L., Shen, S.F.: The genesis of separation. In: Numerical and Physical Aspects of Aerodynamic Flows, pp. 293–311. Springer, 1982

  39. Xin, Z., Zhang, L.: On the global existence of solutions to the Prandtl’s system. Adv. Math. 181(1), 88–133, 2004

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their useful comments. The work of T.-E. G. and N. M. is supported by Tamkeen under the NYU Abu Dhabi Research Institute grant of the center SITE. C. C. is supported by the ERC-2014-CoG 646650 SingWave. N. M. is supported by NSF grant DMS-1716466. Part of this work was done while C. C., T.-E. G. and N. M. were visiting IHÉS and they thank the institution. C. C. is grateful to New York University in Abu Dhabi for a stay during which part of this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Collot.

Additional information

Communicated by J. Bedrossian.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Parametrisation and volume preservation

Lemma A.1

Let \(\Omega \subset {\mathbb {R}}^2\) be open, and \(f=(f_1,f_2)\in C^1(\Omega ,{\mathbb {R}}^2)\) be such that \(\nabla f_1\ne 0\) on \(\Omega \), and that for each q in the range of \(f_1\), the level set \(\Gamma [q]=\{z\in \Omega , \ f_1(z)=q\}\) is diffeomorphic to \({\mathbb {R}}\). Then

  1. (i)

    Let \(\gamma :{\mathcal {O}}\rightarrow \Omega \) be a diffeomorphism between an open set \({\mathcal {O}}\subset {\mathbb {R}}^2\) and \(\Omega \), such that for each \(q \in {\mathbb {R}}\), \(\gamma (q,\cdot )\) is an arclength parametrisation of \(\Gamma [q]\). Then f preserves volume if and only if for all q in the range of \(f_1\), and any two \(z=\gamma (q,s)\) and \(z'=\gamma (q,s')\) it holds that

    $$\begin{aligned} |f_2(z)-f_2(z')|=\left| \int _{s}^{s'} \frac{\mathrm{d}{{\tilde{s}}}}{|\nabla f_1(\gamma (q,{{\tilde{s}}}))|}\right| . \end{aligned}$$
    (A.1)
  2. (ii)

    If \(\partial _{z_1}f_1\ne 0\) on \(\Omega \), let \({{\tilde{z}}}_1:{\mathcal {O}}\rightarrow \Omega \) be the only diffeomorphism between an open set \({\mathcal {O}}\subset {\mathbb {R}}^2\) and \(\Omega \), such that for each \(q\in {\mathbb {R}}\), \({{\tilde{z}}}_1(q,\cdot )\) is the parametrisation of \(\Gamma [q]\) by the second component, i.e. \(\Gamma [q]=\{({{\tilde{z}}}_1(q,{{\tilde{z}}}_2),{{\tilde{z}}}_2), \ (q,{{\tilde{z}}}_2)\in {\mathcal {O}} \}\), then f preserves volume if and only if, for all q in the range of \(f_1\), and any two \(z=({{\tilde{z}}}_1(q,z_2),z_2)\) and \(z'=({{\tilde{z}}}_1(q,z_2'),z_2')\),

    $$\begin{aligned} |f_2(z)-f_2(z')| =\left| \int _{z_2}^{z_2'} \frac{\mathrm{d}\tilde{z_2}}{\partial _{z_1} f_1({{\tilde{z}}}_1(q,{{\tilde{z}}}_2),{{\tilde{z}}}_2)}\right| . \end{aligned}$$
    (A.2)

Proof

Proof of (i). We denote by \(\gamma ^{-1}=( q,s):\Omega \rightarrow {\mathcal {O}}\) the inverse of \( \gamma \), and note that \(q=f_1\). At a point \(z\in \Omega \), considering the orthonormal vectors \(v_1=\nabla f_1(z) |\nabla f_1(z)|^{-1}\) and \(v_2= \nabla ^{\perp }f_1(z) |\nabla f_1(z)|^{-1}\) where \((e_1,e_2)^{\perp }=(-e_2,e_1)\) we get the identities \(\nabla q.v_1=|\nabla f_1(z)|\), \(\nabla q.v_2=0\) and \(\nabla s. v_2=1\). This implies \(|\text {Det}\left( J \gamma ^{-1} \right) |=|\nabla f_1(z)|.\) Consider now the mapping \(\phi :(q,s)\mapsto (q,f_2(\gamma (q,s))\). Since \(\frac{\partial q}{\partial s}_{|_q}=0\) and \(\frac{\partial q}{\partial q}_{|s}=1\) we have \( |\text {Det}\left( J\phi \right) |=|\frac{\partial f_2}{\partial s}_{|q}|. \) Since \(f=\phi \circ \gamma ^{-1}\), we get from the two previous computations that f preserves volume, that is, \(|\text {Det}Jf|=1\), if and only if

$$ |\frac{\partial f_2}{\partial s}_{|q}|=\frac{1}{|\nabla f_1(z)|}. $$

This is equivalent to (i) upon integrating, and noticing that these quantities cannot change sign.

Proof of (ii). From the assumptions on f, there always exists a parametrisation by arclength of the level sets \(\gamma :{\mathcal {O}}' \rightarrow \Omega \) satisfying the properties of (i). We change variables \({{\tilde{z}}}_1^{-1}\circ \gamma :(q,s)\mapsto (q,{{\tilde{z}}}_2)\). Differentiating the identity \(f_1({{\tilde{z}}}_1(q,{{\tilde{z}}}_2),{{\tilde{z}}}_2)=q\) we find \(\frac{\partial {{\tilde{z}}}_1}{\partial _{{{\tilde{z}}}_2}}_{|_{q}}=-\partial _{z_2}f_1/\partial _{z_1}f_1\). Hence

$$ |\frac{\partial s}{\partial {{\tilde{z}}}_2}_{|_q}|=\sqrt{1+\left( \frac{\partial _{z_2}f_1}{\partial _{z_1}f_1} \right) ^2}=\frac{|\nabla f_1|}{|\partial _{z_1}f_1|}. $$

Changing variables \(s \mapsto {{\tilde{z}}}_2\) in (A.1), then yields that f preserves volume if and only if (A.2) holds true. \(\quad \square \)

Computing the normal component of the characteristics

proof of Lemma 5.4

At several moments in the proof, we will use the following: the function \(\Psi _1\) enjoys

$$\begin{aligned}&c<\left| \frac{X\partial _X\Psi _1(X)}{\Psi _1(X)} \right| \leqq \frac{1}{c}, \ \ \ \ |\Psi _1(X)|\lesssim |X|^{\frac{1}{3}}, \nonumber \\&\Psi _1(X+X')=\Psi _1(X)+O \left( |X'|^{\frac{1}{3}}\right) \end{aligned}$$
(B.1)

uniformly for \(X,X'\in {\mathbb {R}}\). From the first bound above, given a small quantity O(|z|) that has size |z|, as an application of the implicit function theorem, it is true that

$$\begin{aligned} \Psi _1\left( X(1+O(|z|))\right) =\Psi _1\left( X\right) (1+O(|z|)), \end{aligned}$$
(B.2)

where the “new” O(|z|) in the right hand side enjoys the same differentiability properties and similar bounds, as the one in the left hand side. To rearrange the O()’s in what follows, we shall simplify \(O(|z_1|)+O(|z_2|)=O(|z_2|)\) in zones where \(|z_1|\lesssim |z_2|\), and \(O(|z|^\alpha )=O(|z|^\beta )\) if \( 0< \beta \leqq \alpha \) as all quantities in the O()’s will be small.

To compute the vertical component, we will use the following result. Assume that (ab) and \((a',b')\) belong to the same level set curve \(\Gamma [x]=\{x({{\tilde{a}}},{\tilde{b}})=x \}\). Assume that, when ordering points on \(\Gamma \) with their distance to the boundary, \((a',b')\) is after (ab), and that either \(b\leqq b'\) or \(a\leqq a'\). Assume moreover that \(\Gamma _{(a,b)}^{(a',b')}\), the part of \(\Gamma \) between (ab) and \((a',b')\), can be either parametrised with the variable \({\tilde{b}}\) as \({{\tilde{a}}}={{\tilde{a}}}({\mathcal {X}},{\tilde{b}})\) for \(b\leqq {\tilde{b}}\leqq b'\) or with the variable \({{\tilde{a}}}\) as \({\tilde{b}}={\tilde{b}}({\mathcal {X}},{{\tilde{a}}})\) for \(a\leqq {{\tilde{a}}}\leqq a'\). Then by applying Lemma A.1 and (5.5) one obtains the following identities:

$$\begin{aligned} \int _{\Gamma _{(a,b)}^{(a',b')}} \frac{\mathrm{d}s}{|\nabla x|}=\frac{1}{k_6{\mathsf {t}}^{\frac{1}{4}}} \int _{b}^{b'} \frac{\mathrm{d}{\tilde{b}}}{|\partial _a {\mathcal {X}}|} \ \ \text {or} \ \ \int _{\Gamma _{(a,b)}^{(a',b')}} \frac{\mathrm{d}s}{|\nabla x|}=\frac{1}{k_6{\mathsf {t}}^{\frac{1}{4}}} \int _{a}^{a'} \frac{\mathrm{d}{\tilde{b}}}{|\partial _b {\mathcal {X}}|}. \end{aligned}$$
(B.3)

Step 1 The normal component for left part of the sides, the core, and the bottom, of the self-similar zone. We first derive rough estimates that will be used in the next steps. Fix \((X,Y)\in Z_0^c\) such that either \(-\epsilon \leqq x(a,b)-x^*\leqq K{\mathsf {t}}^{3/2}\), or, \(K{\mathsf {t}}^{3/2}\leqq x-x^*\leqq \epsilon \) and \(b<0\) and \(N_2 |{\mathcal {X}}|\leqq |b|^2\). Note that in the second case, from (5.11), one has necessarily \(|a|\approx |b|^{2/3}\gg 1\). Let \(\Gamma \) denote the part of the curve \(\Gamma [x]\) which joins the boundary of the upper half plane and (XY). We decompose it in two parts:

$$\begin{aligned} \Gamma _1:= \Gamma \cap Z_0, \ \ \Gamma _2=\Gamma \cap Z_0^c, \ \ {\mathcal {Y}}= k_6{\mathsf {t}}^{\frac{1}{4}}\left( \int _{\Gamma _1} \frac{\mathrm{d}s}{|\nabla x|}+\int _{\Gamma _2} \frac{\mathrm{d}s}{|\nabla x|} \right) . \end{aligned}$$
(B.4)

The integral in \(Z_0\) is at distance one to \((X_0,Y_0)\), and everything then remains regular:

$$\begin{aligned} \int _{\Gamma _1} \frac{\mathrm{d}s}{|\nabla x|}=O(1), \ \ \partial _{{\mathcal {X}}}\left( \int _{\Gamma _1} \frac{\mathrm{d}s}{|\nabla x|}\right) =O\left( {\mathsf {t}}^{\frac{3}{2}}\right) . \end{aligned}$$
(B.5)

In \(Z_0^c\), from Lemma 5.3 the curve \(\Gamma [x]\) lies in \(Z_1\), so it can be parametrised with the variable \({\tilde{b}}\). Also, from (B.3), (5.20) and, as \(|{\tilde{b}}|{\mathsf {t}}^{3/4}\ll 1\) for \(-\delta {\mathsf {t}}^{-3/4}\leqq {\tilde{b}}\leqq b\),

$$\begin{aligned} k_6{\mathsf {t}}^{\frac{1}{4}}\int _{\Gamma _2} \frac{\mathrm{d}s}{|\nabla x|}= & {} \int _{-\frac{\delta }{{\mathsf {t}}^{-\frac{3}{4}}}}^b \frac{\mathrm{d}{\tilde{b}}}{\partial _a{\mathcal {X}}} \ =\ \int _{-\frac{\delta }{{\mathsf {t}}^{-\frac{3}{4}}}}^b \frac{1+O\left( {\mathsf {t}}^{\frac{1}{12}}+|{\tilde{b}}|^{\frac{1}{3}}{\mathsf {t}}^{\frac{1}{4}}+|{\mathcal {X}}|^{\frac{1}{6}}{\mathsf {t}}^{\frac{1}{4}}\right) }{1+3\Psi _1^2( p^* ({\mathcal {X}}-{\tilde{b}}^2) )}\mathrm{d}{\tilde{b}}\nonumber \\= & {} \int _{-\infty }^b \frac{1+O\left( {\mathsf {t}}^{\frac{1}{12}}+|{\tilde{b}}|^{\frac{1}{4}}{\mathsf {t}}^{\frac{3}{16}}+|{\mathcal {X}}|^{\frac{1}{6}}{\mathsf {t}}^{\frac{1}{4}}\right) }{1+3\Psi _1^2( p^* ({\mathcal {X}}-{\tilde{b}}^2) )}\mathrm{d}{\tilde{b}}+O\left( \int _{-\infty }^{-\frac{\delta }{{\mathsf {t}}^{-\frac{3}{4}}}} \frac{\mathrm{d}{\tilde{b}}}{|{\tilde{b}}|^{\frac{4}{3}}} \right) \nonumber \\= & {} \int _{-\infty }^b \frac{1+O\left( {\mathsf {t}}^{\frac{1}{12}}+|{\tilde{b}}|^{\frac{1}{4}}{\mathsf {t}}^{\frac{3}{16}}+|{\mathcal {X}}|^{\frac{1}{6}}{\mathsf {t}}^{\frac{1}{4}} \right) }{1+3\Psi _1^2( p^* ({\mathcal {X}}-{\tilde{b}}^2) )}\mathrm{d}{\tilde{b}}+O\left( {\mathsf {t}}^{\frac{1}{4}} \right) , \end{aligned}$$
(B.6)

where we used the fact that \(|{\mathcal {X}}|\leqq \epsilon {\mathsf {t}}^{-3/2}\), and that for \({\tilde{b}}\leqq -\delta {\mathsf {t}}^{-3/4}\), \({\tilde{b}}^2 \gg {\mathcal {X}}\) if \(\epsilon \) is small enough, implying \(\Psi _1^2(p^*({\mathcal {X}}-{\tilde{b}}^2))\approx |{\tilde{b}}|^{4/3}\). Hence, injecting (B.5) and (B.6) in (B.4),

$$\begin{aligned} {\mathcal {Y}}(a,b)= \int _{-\infty }^b \frac{1+O\left( {\mathsf {t}}^{\frac{1}{12}}+|{\tilde{b}}|^{\frac{1}{4}}{\mathsf {t}}^{\frac{3}{16}}+|{\mathcal {X}}|^{\frac{1}{6}}{\mathsf {t}}^{\frac{1}{4}} \right) }{1+3\Psi _1^2( p^* ({\mathcal {X}}-{\tilde{b}}^2) )}\mathrm{d}{\tilde{b}}+O\left( {\mathsf {t}}^{\frac{1}{4}}\right) . \end{aligned}$$
(B.7)

We now study the derivative of \({\mathcal {Y}}\). As \({\mathcal {X}}({{\tilde{a}}},{\tilde{b}})={\mathcal {X}}\) is inverted through \({{\tilde{a}}}={{\tilde{a}}}({\mathcal {X}},{\tilde{b}})\) one has

$$\begin{aligned} \frac{\partial }{\partial {\mathcal {X}}}_{|{\tilde{b}}}\left( {{\tilde{a}}}({\mathcal {X}},{\tilde{b}}) \right)= & {} \frac{1}{\partial _a {\mathcal {X}}({{\tilde{a}}}({\mathcal {X}},{\tilde{b}}),{\tilde{b}})}, \ \ \frac{\partial }{\partial {\mathcal {X}}}_{|{\tilde{b}}} \left( \frac{1}{\partial _a {\mathcal {X}}({{\tilde{a}}}({\mathcal {X}},{\tilde{b}}),{\tilde{b}})} \right) \\= & {} -\frac{\partial _{aa}{\mathcal {X}}({{\tilde{a}}}({\mathcal {X}},{\tilde{b}}),{\tilde{b}}) }{(\partial _a {\mathcal {X}}({{\tilde{a}}}({\mathcal {X}},{\tilde{b}}),{\tilde{b}}))^3} \end{aligned}$$

One deduces from (B.3), (5.20), (5.21) that

$$\begin{aligned} \frac{\partial }{\partial {\mathcal {X}}}_{|b} \left( k_6{\mathsf {t}}^{\frac{1}{4}}\int _{\Gamma _2} \frac{\mathrm{d}s}{|\nabla x|}\right)= & {} \frac{\partial }{\partial {\mathcal {X}}}_{|b} \left( \int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^b \frac{\mathrm{d}{\tilde{b}}}{\partial _a{\mathcal {X}}({{\tilde{a}}}({\mathcal {X}},{\tilde{b}}),{\tilde{b}})}\right) \\= & {} -\int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^b \frac{\partial _{aa}{\mathcal {X}}({{\tilde{a}}},{\tilde{b}})\mathrm{d}{\tilde{b}}}{(\partial _a {\mathcal {X}}({{\tilde{a}}},{\tilde{b}}))^3}\\= & {} 6p^*\int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^b \frac{\Psi _1\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2 \right) \right) }{\left( 1+3\Psi _1^2\left( p^*({\mathcal {X}}-{\tilde{b}}^2) \right) \right) ^3} \\&\left( 1+O\left( {\mathsf {t}}^{\frac{1}{12}}+|{\mathcal {X}}|^{\frac{1}{6}}{\mathsf {t}}^{\frac{1}{4}}+|{\tilde{b}}|^{\frac{1}{3}}{\mathsf {t}}^{\frac{1}{4}} \right) \right) \mathrm{d}{\tilde{b}}\\&+\int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^b \frac{O\left( {\mathsf {t}}^{\frac{1}{12}} \right) }{\left( 1+3\Psi _1^2\left( p^*({\mathcal {X}}-{\tilde{b}}^2) \right) \right) ^3} \mathrm{d}{\tilde{b}}. \end{aligned}$$

Note that in the integrals above, for \({\tilde{b}}\leqq -\delta {\mathsf {t}}^{-3/4}\) there holds \(\Psi _1(p^*({\mathcal {X}}-{\tilde{b}}^2)) > rsim {\tilde{b}}^{2/3}\). Hence, integrating from infinity instead of \(-\delta {\mathsf {t}}^{-3/4}\) produces an error which is \(O({\mathsf {t}}^{7/4})\) and

$$\begin{aligned} \frac{\partial }{\partial {\mathcal {X}}}_{|b} \left( k_6{\mathsf {t}}^{\frac{1}{4}}\int _{\Gamma _2} \frac{\mathrm{d}s}{|\nabla x|}\right)&= 6p^*\int _{-\infty }^b \frac{\Psi _1\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2 \right) \right) }{\left( 1+3\Psi _1^2\left( p^*({\mathcal {X}}-{\tilde{b}}^2) \right) \right) ^3}\\&\quad \left( 1+O\left( {\mathsf {t}}^{\frac{1}{12}}+|{\mathcal {X}}|^{\frac{1}{6}}{\mathsf {t}}^{\frac{1}{4}}+|{\tilde{b}}|^{\frac{1}{4}}{\mathsf {t}}^{\frac{3}{16}} \right) \right) \mathrm{d}{\tilde{b}}\\&\quad +\int _{-\infty }^b \frac{O\left( {\mathsf {t}}^{\frac{1}{12}} \right) }{\left( 1+3\Psi _1^2\left( p^*({\mathcal {X}}-{\tilde{b}}^2) \right) \right) ^3} \mathrm{d}{\tilde{b}}+O\left( {\mathsf {t}}^{\frac{7}{4}} \right) \end{aligned}$$

Therefore, injecting (5.20), (B.5) and the above identity in (B.4), we get

$$\begin{aligned} \partial _{a}{\mathcal {Y}}(a,b) \,= & {} \, \partial _{a}{\mathcal {X}}\left( k_6{\mathsf {t}}^{\frac{1}{4}}\frac{\partial }{\partial {\mathcal {X}}} \int _{\Gamma _1} \frac{\mathrm{d}s}{|\nabla x|} +\frac{\partial }{\partial {\mathcal {X}}}_{|b} \left( k_6{\mathsf {t}}^{\frac{1}{4}}\int _{\Gamma _2} \frac{\mathrm{d}s}{|\nabla x|}\right) \right) \nonumber \\= & {} \partial _{a}{\mathcal {X}}\Biggl ( 6 p^*\int _{-\infty }^b \frac{\Psi _1\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2 \right) \right) }{\left( 1+3\Psi _1^2\left( p^*({\mathcal {X}}-{\tilde{b}}^2) \right) \right) ^3}\nonumber \\&\left( 1+O\left( {\mathsf {t}}^{\frac{1}{12}}+|{\mathcal {X}}|^{\frac{1}{6}}{\mathsf {t}}^{\frac{1}{4}}+|{\tilde{b}}|^{\frac{1}{4}}{\mathsf {t}}^{\frac{3}{16}} \right) \right) \mathrm{d}{\tilde{b}}\nonumber \\&+\int _{-\infty }^b \frac{O\left( {\mathsf {t}}^{\frac{1}{12}} \right) }{\left( 1+3\Psi _1^2\left( p^*({\mathcal {X}}-{\tilde{b}}^2) \right) \right) ^3} \mathrm{d}{\tilde{b}}+O\left( {\mathsf {t}}^{\frac{7}{4}} \right) \Biggr ) \nonumber \\= & {} 6p^* \left( 1+3\Psi _1^2\left( p^*\left( {\mathcal {X}}-b^2 \right) \right) \right) \nonumber \\&\Biggl ( \int _{-\infty }^b \frac{O\left( {\mathsf {t}}^{\frac{1}{12}} \right) }{\left( 1+3\Psi _1^2\left( p^*({\mathcal {X}}-{\tilde{b}}^2) \right) \right) ^3} \mathrm{d}{\tilde{b}}+O({\mathsf {t}}^{\frac{7}{4}}) \nonumber \\&+ \int _{-\infty }^{b} \frac{\Psi _1\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2 \right) \right) }{\left( 1+3\Psi _1^2\left( p^*({\mathcal {X}}-{\tilde{b}}^2) \right) \right) ^3} \nonumber \\&\quad \left( 1+O\left( {\mathsf {t}}^{\frac{1}{12}}+|{\mathcal {X}}|^{\frac{1}{6}}{\mathsf {t}}^{\frac{1}{4}}+|{\tilde{b}}|^{\frac{1}{4}}{\mathsf {t}}^{\frac{3}{16}}+{\mathsf {t}}^{\frac{1}{4}}|b|^{\frac{1}{3}} \right) \right) \mathrm{d}{\tilde{b}}\Biggr ). \end{aligned}$$
(B.8)

The estimates (5.27) and (5.28), and (1.17), prove (5.27) and (5.28) for the first case.

Step 2 The normal component for the sides of the self-similar zone. We now prove the estimates (5.30) and (5.31) in the second case described by (5.29). The parametrisation of the curve \(\Gamma [x]\) has to be done more carefully. In the case of the left side, i.e. \(x<0\), we are in the case considered in Step 1, which has already been covered. In the case of the right side, i.e. \(x>0\), we are in case (ii) of Lemma 5.3, and then inside \(Z_0^c\), the curve \(\Gamma \) can be decomposed in five curves, \(\Gamma _i\) for \(i=1,...,5\) that enjoy the properties described there. We use different variables to parametrise the curves \(\Gamma _i\), applying Lemma 5.3. On \(\Gamma _1\) we use the variable \({\tilde{b}}\), on \(\Gamma _2\) \({{\tilde{a}}}\), on \(\Gamma _3\) \({\tilde{b}}\), on \(\Gamma _4\) \({{\tilde{a}}}\) and on \(\Gamma _5\) \({\tilde{b}}\). Without loss of generality for the argument, we assume that \(({{\overline{a}}},{{\overline{b}}})\) is located on \(\Gamma _2\). Indeed, treating the case of three or more different parametrisation can be done the very same way. We consider a point (ab) close to \(({{\overline{a}}},{{\overline{b}}})\), which still belongs to \(\Gamma _2\) (up to changing slightly the constants in the definition of \(Z_1\) and \(Z_2\)). We denote by \(\Gamma _0\) the part of the curve outside \(Z_0^c\). Hence, from (B.3),

$$\begin{aligned} {\mathcal {Y}}=k_6{\mathsf {t}}^{\frac{1}{4}} \int _{\Gamma _0} \frac{\mathrm{d}s}{|\nabla x|}+\int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^{b_1} \frac{\mathrm{d}{\tilde{b}}}{\partial _a {\mathcal {X}}}+\int _{a_1}^{a} \frac{\mathrm{d}{{\tilde{a}}}}{\partial _b {\mathcal {X}}}, \end{aligned}$$
(B.9)

where we recall that \((a_1,b_1)\) is the endpoint of \(\Gamma _1\) and the starting point of \(\Gamma _2\), defined in Lemma 5.3. The integral over \(\Gamma _0\) is at distance one to \((X_0,Y_0)\) and hence, in a zone where everything remains regular,

$$\begin{aligned} \int _{\Gamma _0} \frac{\mathrm{d}s}{|\nabla x|}=O(1), \ \ \partial _{{\mathcal {X}}}\left( \int _{\Gamma _0} \frac{\mathrm{d}s}{|\nabla x|}\right) =O\left( {\mathsf {t}}^{\frac{3}{2}}\right) . \end{aligned}$$
(B.10)

We now consider the second integral, corresponding to the part \(\Gamma _1\) of the curve joining the points \((a_{in},-\delta {\mathsf {t}}^{-3/4})\) and \((a_1,b_1)\). Since this part is in \(Z_1\), one obtains from (5.20), injecting (5.67), that

$$\begin{aligned} \int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^{b_1} \frac{\mathrm{d}{\tilde{b}}}{\partial _a {\mathcal {X}}}= & {} \int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^{b_1} \frac{\mathrm{d}{\tilde{b}}}{1+3\Psi _1^2(p^*({\mathcal {X}}-{\tilde{b}}^2))} \nonumber \\&\left( 1+O\left( {\mathsf {t}}^{\frac{1}{12}}|{\mathcal {X}}|^{\frac{1}{18}}+ {\mathsf {t}}^{\frac{1}{12}}|{\tilde{b}}|^{\frac{1}{9}} \right) \right) \end{aligned}$$
(B.11)

We turn to the third integral, corresponding to the part \(\Gamma _2\) of the curve joining the points \((a_{1},b_1)\) and (ab). There, since this part is in \(Z_2\), one obtains from (5.23) that

$$ \int _{a_1}^{a} \frac{\mathrm{d}{{\tilde{a}}}}{\partial _b {\mathcal {X}}} = \int _{a_1}^a \frac{\mathrm{d}{{\tilde{a}}}}{2\sqrt{{\mathcal {X}}-{{\tilde{a}}}-p^{*2}{{\tilde{a}}}^3}} \left( 1+O\left( |{\mathcal {X}}|^{\frac{1}{6}}{\mathsf {t}}^{\frac{1}{4}}\right) \right) . $$

In \(Z_2\), one has from (5.10) that \(|{{\tilde{a}}}|\ll |{\tilde{b}}|^{2/3}\) and \(|{\tilde{b}}|\gg 1\), so that from (5.11) one has

$$\begin{aligned} {\mathcal {X}}\approx |{\tilde{b}}|^2\gg |{{\tilde{a}}}|^3 \ \ \text {and} \ \ \sqrt{{\mathcal {X}}-{{\tilde{a}}}-p^{*2}{{\tilde{a}}}^3}\approx {\mathcal {X}}^{1/2} \end{aligned}$$
(B.12)

uniformly for \({{\tilde{a}}}\) in \(Z_2\), as well as \(|a_1|,|a|\ll {\mathcal {X}}^{1/3}\). Using these bounds, one infers from the above identity that

$$\begin{aligned} \int _{a_1}^{a} \frac{\mathrm{d}{{\tilde{a}}}}{\partial _b {\mathcal {X}}}= & {} \int _{a_1}^a \frac{\mathrm{d}{{\tilde{a}}}}{2\sqrt{{\mathcal {X}}-{{\tilde{a}}}-p^{*2}{{\tilde{a}}}^3}} +O\left( \frac{|a-a_1|}{|{\mathcal {X}}|^{\frac{1}{2}}} |{\mathcal {X}}|^{\frac{1}{6}}{\mathsf {t}}^{\frac{1}{4}}\right) \\= & {} \int _{a_1}^a \frac{\mathrm{d}{{\tilde{a}}}}{2\sqrt{{\mathcal {X}}-{{\tilde{a}}}-p^{*2}{{\tilde{a}}}^3}} +O\left( |{\mathcal {X}}|^{-\frac{1}{6}+\frac{1}{6}}{\mathsf {t}}^{\frac{1}{4}}\right) . \end{aligned}$$

Also, from the identity (5.15), using the above bound (B.12),

$$\begin{aligned}&\left| a+\frac{1}{p^*}\Psi _1\left( p^*\left( {\mathcal {X}}-b^2\right) \right) \right| +\left| a+\frac{1}{p^*}\Psi _1\left( p^*\left( {\mathcal {X}}-b^2\right) \right) \right| \lesssim |{\mathcal {X}}|^{\frac{1}{3} +\frac{1}{18}}{\mathsf {t}}^{\frac{1}{12}}, \nonumber \\&\left| \int _{a}^{-\frac{1}{p^*}\Psi _1\left( p^*\left( {\mathcal {X}}-b^2\right) \right) } \frac{\mathrm{d}{{\tilde{a}}}}{\sqrt{{\mathcal {X}}-{{\tilde{a}}}-p^{*2}{{\tilde{a}}}^3}} \right| \nonumber \\&\quad \lesssim \frac{\left| a+\frac{1}{p^*}\Psi _1\left( p^*\left( {\mathcal {X}}-b^2\right) \right) \right| }{|{\mathcal {X}}|^{\frac{1}{2}}}\lesssim |{\mathcal {X}}|^{-\frac{1}{6}+\frac{1}{18}}{\mathsf {t}}^{\frac{1}{12}}, \nonumber \\&\left| \int _{a_1}^{-\frac{1}{p^*}\Psi _1\left( p^*\left( {\mathcal {X}}-4b_1^2\right) \right) } \frac{\mathrm{d}{{\tilde{a}}}}{\sqrt{{\mathcal {X}}-{{\tilde{a}}}-p^{*2}{{\tilde{a}}}^3}} \right| \nonumber \\&\quad \lesssim \frac{\left| a_1+\frac{1}{p^*}\Psi _1\left( p^*\left( {\mathcal {X}}-4b_1^2\right) \right) \right| }{|{\mathcal {X}}|^{\frac{1}{2}}}\lesssim |{\mathcal {X}}|^{-\frac{1}{6}+\frac{1}{18}}{\mathsf {t}}^{\frac{1}{12}}. \end{aligned}$$
(B.13)

Therefore

$$ \int _{a_1}^{a} \frac{\mathrm{d}{{\tilde{a}}}}{\partial _b {\mathcal {X}}} =\int _{-\frac{1}{p^*}\Psi _1\left( p^*\left( {\mathcal {X}}-4b_1^2\right) \right) }^{-\frac{1}{p^*}\Psi _1\left( p^*\left( {\mathcal {X}}-b^2\right) \right) } \frac{\mathrm{d}{{\tilde{a}}}}{2\sqrt{{\mathcal {X}}-{{\tilde{a}}}-p^{*2}{{\tilde{a}}}^3}} +O\left( |{\mathcal {X}}|^{-\frac{1}{6}+\frac{1}{18}}{\mathsf {t}}^{\frac{1}{12}} \right) . $$

We now change variables in the above integral, taking \({\tilde{b}}=-\sqrt{{\mathcal {X}}-{{\tilde{a}}}-p^{*2}{{\tilde{a}}}^3}\). The left and right endpoints of the integral are precisely \(b_1\) and b, and this produces

$$\begin{aligned} {{\tilde{a}}}= & {} -\frac{1}{p^*} \Psi _1\left( p^*({\mathcal {X}}-{\tilde{b}}^2)\right) , \ \ \mathrm{d}{\tilde{b}}=\frac{1}{2} \frac{1+3p^{*2}{{\tilde{a}}}^2}{\sqrt{{\mathcal {X}}-{{\tilde{a}}}-p^{*2}{{\tilde{a}}}^3}}d{{\tilde{a}}}, \\ \int _{a_1}^{a} \frac{\mathrm{d}{{\tilde{a}}}}{\partial _b {\mathcal {X}}}= & {} \int _{b_1}^{b} \frac{\mathrm{d}{\tilde{b}}}{1+3\Psi _1^2\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2\right) \right) }+O\left( |{\mathcal {X}}|^{-\frac{1}{6}+\frac{1}{18}}{\mathsf {t}}^{\frac{1}{12}} \right) . \end{aligned}$$

We inject the identities (B.10), (B.11) and the above identity in the expression (B.9), giving the following expression for \({\mathcal {Y}}\):

$$\begin{aligned} {\mathcal {Y}}= & {} \int _{-\frac{\delta }{{\mathsf {t}}^{\frac{3}{4}}}}^{b} \frac{\mathrm{d}{\tilde{b}}\left( 1+O\left( |{\mathcal {X}}|^{\frac{1}{18}}{\mathsf {t}}^{\frac{1}{12}}+ |{\tilde{b}}|^{\frac{1}{9}}{\mathsf {t}}^{\frac{1}{12}}\right) \right) }{1+3\Psi _1^2 \left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2\right) \right) }+O\left( |{\mathcal {X}}|^{-\frac{1}{6}+\frac{1}{18}}{\mathsf {t}}^{\frac{1}{12}} \right) \nonumber \\= & {} {\mathcal {Y}}^\Theta (a,b) \left( 1+O\left( {\mathsf {t}}^{\frac{1}{12}}|{\mathcal {X}}|^{\frac{1}{18}}\right) \right) . \end{aligned}$$
(B.14)

Here we used (5.36). This shows the first desired bound in (5.30). We now consider the derivatives of \({\mathcal {Y}}\). The point \((a_1,b_1)\) changes as \({\mathcal {X}}\) changes, but the identity \({\mathcal {X}}(a_1,b_1)={\mathcal {X}}(a,b)\) ensures that

$$\begin{aligned} \partial _{\mathcal {X}}a_1\partial _a{\mathcal {X}}(a_1,b_1)+\partial _{\mathcal {X}}b_1 \partial _b {\mathcal {X}}(a_1,b_1)=1. \end{aligned}$$
(B.15)

Hence, differentiating the sum of the two leading order integrals in (B.9) one obtains

$$\begin{aligned}&{\mathsf {t}}^{\frac{1}{4}}k_6\partial _a \left( \int _{\Gamma _1} \frac{\mathrm{d}s}{|\nabla x|}+\int _{\Gamma _2} \frac{\mathrm{d}s}{|\nabla x|}\right) \nonumber \\&\quad = \partial _a \left( \int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^{b_1(a,b)} \frac{\mathrm{d}{\tilde{b}}}{\partial _a {\mathcal {X}}({{\tilde{a}}}({\mathcal {X}},{\tilde{b}}),{\tilde{b}})}+\int _{a_1(a,b)}^a -\frac{\mathrm{d}{{\tilde{a}}}}{\partial _b {\mathcal {X}}({{\tilde{a}}},{\tilde{b}}({\mathcal {X}},{{\tilde{a}}}))} \right) \nonumber \\&\quad = \partial _a {\mathcal {X}}(a,b) \nonumber \\&\qquad \Biggl (\int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^{b_1} \partial _{\mathcal {X}}\left( \frac{1}{\partial _a {\mathcal {X}}({{\tilde{a}}}({\mathcal {X}},{\tilde{b}}),{\tilde{b}})}\right) \mathrm{d}{\tilde{b}}+\int _{a_1}^{a} \partial _{\mathcal {X}}\left( -\frac{1}{\partial _b {\mathcal {X}}({{\tilde{a}}},{\tilde{b}}({\mathcal {X}},{{\tilde{a}}}) )}\right) d{{\tilde{a}}}\nonumber \\&\qquad \qquad +\frac{\partial _{\mathcal {X}}b_1}{\partial _a{\mathcal {X}}(a_1,b_1)}+\frac{\partial _{\mathcal {X}}a_1}{\partial _b{\mathcal {X}}(a_1,b_1)} \Biggr )-\frac{1}{\partial _b {\mathcal {X}}(a,b)} \nonumber \\&\quad = \partial _a {\mathcal {X}}(a,b) \nonumber \\&\qquad \Biggl (\int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^{b_1} \frac{-\partial _{aa}{\mathcal {X}}({{\tilde{a}}}({\mathcal {X}},{\tilde{b}}),{\tilde{b}})\mathrm{d}{\tilde{b}}}{\left( \partial _a {\mathcal {X}}({{\tilde{a}}}({\mathcal {X}},{\tilde{b}}),{\tilde{b}})\right) ^3} +\int _{a_1}^{a} \frac{\partial _{bb}{\mathcal {X}}({{\tilde{a}}},{\tilde{b}}({\mathcal {X}},{{\tilde{a}}}) )d{{\tilde{a}}}}{\left( \partial _b {\mathcal {X}}({{\tilde{a}}},{\tilde{b}}({\mathcal {X}},{{\tilde{a}}}) )\right) ^3} \nonumber \\&\qquad \quad + \frac{1}{\partial _a {\mathcal {X}}(a_1,b_1) \partial _b {\mathcal {X}}(a_1,b_1)}\Biggr ) \nonumber \\&\qquad -\frac{1}{\partial _b {\mathcal {X}}(a,b)}. \end{aligned}$$
(B.16)

The first integral is located in \(Z_1\) with \(|a|\gg 1\), hence from (5.20) and (5.21),

$$\begin{aligned} \begin{aligned}&\int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^{b_1} \frac{-\partial _{aa}{\mathcal {X}}\left( {{\tilde{a}}}({\mathcal {X}},{\tilde{b}}),{\tilde{b}}\right) }{\left( \partial _a {\mathcal {X}}\left( {{\tilde{a}}}({\mathcal {X}},{\tilde{b}}),{\tilde{b}}\right) \right) ^3}\mathrm{d}{\tilde{b}}\\&\quad = 6p^* \int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^{b_1} \frac{\Psi _1\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2\right) \right) \left( 1+O\left( {\mathsf {t}}^{\frac{1}{12}}|{\mathcal {X}}|^{\frac{1}{18}} +{\mathsf {t}}^{\frac{1}{12}}|{\tilde{b}}|^{\frac{1}{9}}\right) \right) }{\left( 1 +3\Psi _1^2\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2\right) \right) \right) ^3}\mathrm{d}{\tilde{b}}. \end{aligned} \end{aligned}$$
(B.17)

The second integral is located in \(Z_2\), hence from (5.23) and (5.24),

$$ \int _{a_1}^{a} \frac{\partial _{bb}{\mathcal {X}}\left( {{\tilde{a}}},{\tilde{b}}({\mathcal {X}},{{\tilde{a}}}) \right) }{\left( \partial _b {\mathcal {X}}\left( {{\tilde{a}}},{\tilde{b}}({\mathcal {X}},{{\tilde{a}}}) \right) \right) ^3}d{{\tilde{a}}}= -\frac{1}{4} \int _{a_1}^{a} \frac{1+O\left( |{\mathcal {X}}|^{\frac{1}{6}}{\mathsf {t}}^{\frac{1}{4}}\right) }{\left( {\mathcal {X}}-{{\tilde{a}}}-p^{*2}{{\tilde{a}}}^3 \right) ^{\frac{3}{2}}}d{{\tilde{a}}}. $$

From (B.12), (B.13),

$$\begin{aligned}&\int _{a_1}^{a} \frac{\partial _{bb}{\mathcal {X}}\left( {{\tilde{a}}},{\tilde{b}}({\mathcal {X}},{{\tilde{a}}}) \right) }{\left( \partial _b {\mathcal {X}}\left( {{\tilde{a}}},{\tilde{b}}({\mathcal {X}},{{\tilde{a}}}) \right) \right) ^3}d{{\tilde{a}}}\\&\quad = -\frac{1}{4} \int _{-\frac{1}{p^*} \Psi _1\left( p^*\left( {\mathcal {X}}-4b_1^2\right) \right) }^{-\frac{1}{p^*} \Psi _1\left( p^*\left( {\mathcal {X}}-b^2\right) \right) } \frac{\mathrm{d}{{\tilde{a}}}}{\left( {\mathcal {X}}-{{\tilde{a}}}-p^{*2}{{\tilde{a}}}^3 \right) ^{\frac{3}{2}}} +O\left( |a-a_1|\frac{|{\mathcal {X}}|^{\frac{1}{6}}{\mathsf {t}}^{\frac{1}{4}}}{|{\mathcal {X}}|^{\frac{3}{2}}} \right) \\&\qquad +O\left( \left| \frac{\left| a+\frac{1}{p^*} \Psi _1 \left( p^*\left( {\mathcal {X}}-b^2 \right) \right) \right| +\left| a_1+\frac{1}{p^*} \Psi _1 \left( p^*\left( {\mathcal {X}}-4b_1^2 \right) \right) \right| }{|{\mathcal {X}}|^{\frac{3}{2}}} \right| \right) \\&\quad = -\frac{1}{4} \int _{-\frac{1}{p^*} \Psi _1\left( p^*\left( {\mathcal {X}}-4b_1^2\right) \right) }^{-\frac{1}{p} \Psi _1\left( p^*\left( {\mathcal {X}}-b^2\right) \right) } \frac{\mathrm{d}{{\tilde{a}}}}{\left( {\mathcal {X}}-{{\tilde{a}}}-p^{*2}{{\tilde{a}}}^3 \right) ^{\frac{3}{2}}}+O\left( \left| {\mathcal {X}}\right| ^{-\frac{7}{6}+\frac{1}{18}}{\mathsf {t}}^{\frac{1}{12}} \right) . \end{aligned}$$

We now change variables, taking \({\tilde{b}}=-\sqrt{{\mathcal {X}}-{{\tilde{a}}}-p^{*2}{{\tilde{a}}}^3}\). Note that this change of variables ensures \({\mathcal {X}}^\Theta ({{\tilde{a}}},{\tilde{b}})={{\tilde{a}}}+p^{*2}{{\tilde{a}}}^3+{\tilde{b}}^2=Cte={\mathcal {X}}\), and

$$ -\frac{1}{4} \frac{1}{\left( {\mathcal {X}}-{{\tilde{a}}}-p^{*2}{{\tilde{a}}}^3 \right) ^{\frac{3}{2}}}=\frac{\partial _{bb}{\mathcal {X}}^\Theta }{(\partial _b {\mathcal {X}}^\Theta )^3}. $$

There holds in this case a general formula when integrating on the curve \(\{{\mathcal {X}}(a,b)=Cte\}\), obtained by performing a change of variables and an integration by parts (note the signs \(\partial _a {\mathcal {X}}^\Theta >0\) and \(\partial _b {\mathcal {X}}^\Theta <0\) in the present case):

$$\begin{aligned} \int _{a_1}^{a_2} \frac{\partial _{bb}{\mathcal {X}}^\Theta }{(\partial _{b}{\mathcal {X}}^\Theta )^3}\mathrm{d}a&= - \int _{b_1}^{b_2} \frac{\partial _{bb}{\mathcal {X}}^\Theta \mathrm{d}b}{(\partial _{b}{\mathcal {X}}^\Theta )^2\partial _a {\mathcal {X}}^\Theta } \\&= - \int _{b_1}^{b_2} \left( \frac{\mathrm{d}}{\mathrm{d}b} \partial _b {\mathcal {X}}^\Theta +\frac{\partial _b {\mathcal {X}}^\Theta }{\partial _a {\mathcal {X}}^\Theta }\partial _{ba} {\mathcal {X}}^\Theta \right) \frac{\mathrm{d}b}{(\partial _{b} {\mathcal {X}}^\Theta )^2\partial _a {\mathcal {X}}^\Theta } \\&= -\int _{b_1}^{b_2} \frac{\mathrm{d}}{\mathrm{d}b} (\partial _b {\mathcal {X}}^\Theta )\frac{1}{(\partial _{b} {\mathcal {X}}^\Theta )^2\partial _a {\mathcal {X}}^\Theta } \mathrm{d}b- \int _{b_1}^{b_2} \frac{\partial _{ab} {\mathcal {X}}^\Theta }{\partial _b {\mathcal {X}}^\Theta (\partial _a {\mathcal {X}}^\Theta )^2} \\&= -\int _{b_1}^{b_2} \frac{\mathrm{d}}{\mathrm{d}b} \left( \partial _b {\mathcal {X}}^\Theta \frac{1}{(\partial _{b} {\mathcal {X}}^\Theta )^2\partial _a {\mathcal {X}}^\Theta }\right) \mathrm{d}a\\&\quad +\int _{b_1}^{b_2} \partial _b {\mathcal {X}}^\Theta \frac{\mathrm{d}}{\mathrm{d}b}\left( \frac{1}{(\partial _{b} {\mathcal {X}}^\Theta )^2\partial _a {\mathcal {X}}^\Theta }\right) \mathrm{d}b \\&\quad -\int _{b_1}^{b_2} \frac{\partial _{ab} {\mathcal {X}}^\Theta \mathrm{d}b}{\partial _b {\mathcal {X}}^\Theta (\partial _a {\mathcal {X}}^\Theta )^2} \\&= - \frac{1}{\partial _a {\mathcal {X}}^\Theta (a_2,b_2)\partial _b {\mathcal {X}}^\Theta (a_2,b_2)}+\frac{1}{\partial _a {\mathcal {X}}^\Theta (a_1,b_1)\partial _b {\mathcal {X}}^\Theta (a_1,b_1)} \\&\quad -2\int _{b_1}^{b_2} \left( \partial _{bb} {\mathcal {X}}^\Theta -\frac{\partial _b {\mathcal {X}}^\Theta }{\partial _a {\mathcal {X}}^\Theta }\partial _{ab} {\mathcal {X}}^\Theta \right) \frac{1}{(\partial _{b} {\mathcal {X}}^\Theta )^2\partial _a {\mathcal {X}}^\Theta } \mathrm{d}b\\&\quad -\int _{b_1}^{b_2} \left( \partial _{ab} {\mathcal {X}}^\Theta -\frac{\partial _b {\mathcal {X}}^\Theta }{\partial _{a} {\mathcal {X}}^\Theta }\partial _{aa} {\mathcal {X}}^\Theta \right) \frac{1}{\partial _b {\mathcal {X}}^\Theta (\partial _a {\mathcal {X}}^\Theta )^2}\mathrm{d}b \\&\quad -\int _{b_1}^{b_2} \frac{\partial _{ab} {\mathcal {X}}^\Theta }{\partial _b {\mathcal {X}}^\Theta (\partial _a {\mathcal {X}}^\Theta )^2} \\&= -\frac{1}{\partial _a {\mathcal {X}}^\Theta (a_2,b_2)\partial _b {\mathcal {X}}^\Theta (a_2,b_2)}+\frac{1}{\partial _a {\mathcal {X}}^\Theta (a_1,b_1)\partial _b {\mathcal {X}}^\Theta (a_1,b_1)} \\&\quad +2\int _{a_1}^{a_2} \frac{\partial _{bb} {\mathcal {X}}^\Theta }{(\partial _{b} {\mathcal {X}}^\Theta )^3} \mathrm{d}a+\int _{b_1}^{b_2} \frac{\partial _{aa} {\mathcal {X}}^\Theta }{(\partial _a {\mathcal {X}}^\Theta )^3}\mathrm{d}b, \end{aligned}$$

from which one deduces the change of parametrisation identity

$$\begin{aligned} \int _{a_1}^{a_2} \frac{\partial _{bb} {\mathcal {X}}^\Theta }{(\partial _{b} {\mathcal {X}}^\Theta )^3}\mathrm{d}a= & {} \frac{1}{\partial _a {\mathcal {X}}^\Theta (a_2,b_2)\partial _b {\mathcal {X}}^\Theta (a_2,b_2)}-\frac{1}{\partial _a {\mathcal {X}}^\Theta (a_1,b_1)\partial _b {\mathcal {X}}^\Theta (a_1,b_1)} \\&-\int _{b_1}^{b_2} \frac{\partial _{aa} {\mathcal {X}}^\Theta }{(\partial _a {\mathcal {X}}^\Theta )^3}\mathrm{d}b. \end{aligned}$$

Applied to our case, this produces, noticing that the endpoint, are \((a_1,b_1)\) and (ab),

$$\begin{aligned}&-\frac{1}{4} \int _{-\frac{1}{p^*} \Psi _1\left( p^*\left( {\mathcal {X}}-4b_1^2\right) \right) }^{-\frac{1}{p^*} \Psi _1\left( p^*\left( {\mathcal {X}}-b^2\right) \right) } \frac{1}{\left( {\mathcal {X}}-{{\tilde{a}}}-p^{*2}{{\tilde{a}}}^3 \right) ^{\frac{3}{2}}}d{{\tilde{a}}}\\&\quad = \frac{1}{\partial _a{\mathcal {X}}^\Theta (a,b)\partial _b {\mathcal {X}}^\Theta (a,b)}-\frac{1}{\partial _a {\mathcal {X}}^\Theta (a_1,b_1)\partial _b {\mathcal {X}}^\Theta (a_1,b_1)}-\int _{b_1}^b \frac{\partial _{aa}{\mathcal {X}}^\Theta }{(\partial _a {\mathcal {X}}^\Theta )^3}\mathrm{d}{\tilde{b}}\\&\quad = \frac{1}{(1+3p^{*2}a^2)2b}-\frac{1}{(1+3p^{*2}a_1^2)2b_1} \\&\qquad +6p^* \int _{b_1}^b \frac{\Psi _1\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2\right) \right) }{\left( 1+3\Psi _1^2\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2 \right) \right) \right) ^3}\mathrm{d}{\tilde{b}}. \end{aligned}$$

Note that, since \((a_1,b_1)\) belong to both \(Z_1\) and \(Z_2\), from (B.12), (5.23) and (5.20),

$$\begin{aligned} \frac{1}{\partial _a {\mathcal {X}}(a_1,b_1)\partial _b{\mathcal {X}}(a_1,b_1)}= & {} \frac{1+O\left( |{\mathcal {X}}|^{\frac{1}{6}}{\mathsf {t}}^{\frac{1}{4}}\right) }{\left( 1+3p^{*2}a_1^2\right) 2b_1} \\= & {} \frac{1}{\left( 1+3p^{*2}a_1^2\right) 2b_1}+O\left( |{\mathcal {X}}|^{-\frac{7}{6}+\frac{1}{6}}{\mathsf {t}}^{\frac{1}{4}} \right) , \end{aligned}$$

so that

$$\begin{aligned} \int _{a_1}^{a} \frac{\partial _{bb}{\mathcal {X}}\left( {{\tilde{a}}},{\tilde{b}}({\mathcal {X}},{{\tilde{a}}}) \right) }{\left( \partial _b {\mathcal {X}}\left( {{\tilde{a}}},{\tilde{b}}({\mathcal {X}},{{\tilde{a}}}) \right) \right) ^3}d{{\tilde{a}}}= & {} \frac{1}{(1+3p^{*2}a^2)2b}-\frac{1}{\partial _a {\mathcal {X}}(a_1,b_1)\partial _b{\mathcal {X}}(a_1,b_1)} \\&+6p^* \int _{b_1}^b \frac{\Psi _1\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2\right) \right) }{\left( 1+3\Psi _1^2\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2 \right) \right) \right) ^3}\mathrm{d}{\tilde{b}}\\&+O\left( |{\mathcal {X}}|^{-\frac{7}{6}+\frac{1}{18}}{\mathsf {t}}^{\frac{1}{12}} \right) . \end{aligned}$$

From the above identity and (B.17) one concludes that

$$\begin{aligned}&\int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^{b_1} \frac{-\partial _{aa}{\mathcal {X}}\left( {{\tilde{a}}}({\mathcal {X}},{\tilde{b}}), {\tilde{b}}\right) }{\left( \partial _a {\mathcal {X}}\left( {{\tilde{a}}}({\mathcal {X}},{\tilde{b}}),{\tilde{b}}\right) \right) ^3}\mathrm{d}{\tilde{b}}+\int _{a_1}^{a} \frac{\partial _{bb}{\mathcal {X}}\left( {{\tilde{a}}},{\tilde{b}}({\mathcal {X}},{{\tilde{a}}}) \right) }{\left( \partial _b {\mathcal {X}}\left( {{\tilde{a}}},{\tilde{b}}({\mathcal {X}},{{\tilde{a}}}) \right) \right) ^3}d{{\tilde{a}}}\\&\qquad +\frac{1}{\partial _a {\mathcal {X}}(a_1,b_1) \partial _b {\mathcal {X}}(a_1,b_1)}\\&\quad = 6p^*\int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^{b} \frac{\Psi _1\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2\right) \right) \left( 1+O\left( {\mathsf {t}}^{\frac{1}{12}}|{\mathcal {X}}|^{\frac{1}{18}}+{\mathsf {t}}^{\frac{1}{12}}|{\tilde{b}}|^{\frac{1}{9}}\right) \right) }{\left( 1+3\Psi _1^2\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2 \right) \right) \right) ^3}\mathrm{d}{\tilde{b}}\\&\qquad + \frac{1}{(1+3p^{*2}a^2)2b}+O\left( |{\mathcal {X}}|^{-\frac{7}{6}+\frac{1}{18}}{\mathsf {t}}^{\frac{1}{12}}\right) \end{aligned}$$

From (5.37), and using the fact that for \({\tilde{b}}\leqq -\delta {\mathsf {t}}^{3/4}\), one has \(|\Psi _1\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2\right) \right) |\approx |{\tilde{b}}|^{2/3}\), and

$$\begin{aligned}&\int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^{b} \frac{\Psi _1\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2\right) \right) \left( 1+O\left( {\mathsf {t}}^{\frac{1}{12}}|{\mathcal {X}}|^{\frac{1}{18}}+{\mathsf {t}}^{\frac{1}{12}}|{\tilde{b}}|^{\frac{1}{9}}\right) \right) }{\left( 1+3\Psi _1^2\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2 \right) \right) \right) ^3}\mathrm{d}{\tilde{b}}\\&\quad = \int _{-\infty }^{b} \frac{\Psi _1\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2\right) \right) }{\left( 1+3\Psi _1^2\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2 \right) \right) \right) ^3}\mathrm{d}{\tilde{b}}+O\left( |{\mathcal {X}}|^{-\frac{7}{6}+\frac{1}{18}}{\mathsf {t}}^{\frac{1}{12}} \right) . \end{aligned}$$

Therefore

$$\begin{aligned}&\int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^{b_1} \frac{-\partial _{aa}{\mathcal {X}}\left( {{\tilde{a}}}({\mathcal {X}},{\tilde{b}}),{\tilde{b}}\right) }{\left( \partial _a {\mathcal {X}}\left( {{\tilde{a}}}({\mathcal {X}},{\tilde{b}}),{\tilde{b}}\right) \right) ^3}\mathrm{d}{\tilde{b}}+\int _{a_1}^{a} \frac{\partial _{bb}{\mathcal {X}}\left( {{\tilde{a}}},{\tilde{b}}({\mathcal {X}},{{\tilde{a}}}) \right) }{\left( \partial _b {\mathcal {X}}\left( {{\tilde{a}}},{\tilde{b}}({\mathcal {X}},{{\tilde{a}}}) \right) \right) ^3}d{{\tilde{a}}}\nonumber \\&\qquad +\frac{1}{\partial _a {\mathcal {X}}(a_1,b_1) \partial _b {\mathcal {X}}(a_1,b_1)} \nonumber \\&\quad = \int _{-\infty }^{b} \frac{\Psi _1\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2\right) \right) }{\left( 1+3\Psi _1^2\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2 \right) \right) \right) ^3}\mathrm{d}{\tilde{b}}+ \frac{1}{(1+3p^{*2}a^2)2b} \nonumber \\&\qquad +O\left( |{\mathcal {X}}|^{-\frac{7}{6}+\frac{1}{18}}{\mathsf {t}}^{\frac{1}{12}}\right) \end{aligned}$$
(B.18)

Since (ab) is in \(Z_2\), from (B.12), (5.23) and (5.20),

$$ \frac{\partial _a {\mathcal {X}}(a,b)}{(1+3p^{*2}a^2)2b}= \frac{1}{\partial _b {\mathcal {X}}(a,b)}+O\left( |{\mathcal {X}}|^{-\frac{1}{2}+\frac{1}{6}}{\mathsf {t}}^{\frac{1}{4}}\right) . $$

Injecting the two identities above, (B.17) and \(|\partial _a{\mathcal {X}}|\lesssim |{\mathcal {X}}|^{2/3}\) in the identity (B.16) gives

$$\begin{aligned}&{\mathsf {t}}^{\frac{1}{4}}k_6\partial _a \left( \int _{\Gamma _1} \frac{\mathrm{d}s}{|\nabla x|}+\int _{\Gamma _2} \frac{\mathrm{d}s}{|\nabla x|}\right) \\&\quad = 6 p^*\partial _a {\mathcal {X}}(a,b) \int _{-\infty }^{b} \frac{\Psi _1\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2\right) \right) \mathrm{d}{\tilde{b}}}{\left( 1+3\Psi _1^2\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2 \right) \right) \right) ^3} \\&\qquad +O\left( |{\mathcal {X}}|^{-\frac{1}{2} +\frac{1}{18}}{\mathsf {t}}^{\frac{1}{12}} \right) \end{aligned}$$

From this identity, (B.9), (B.10) and (5.68), we have proved that

$$ \partial _a {\mathcal {Y}}=\partial _a {\mathcal {Y}}^\Theta +O\left( |{\mathcal {X}}|^{-\frac{1}{2} +\frac{1}{18}}{\mathsf {t}}^{\frac{1}{12}} \right) , $$

which is the second identity in (5.30) that we had to show. We now turn to the partial derivative with respect to b. From (B.9) and (B.15), and then injecting (B.18), (5.68), (5.69) and (5.67),

$$\begin{aligned}&{\mathsf {t}}^{\frac{1}{4}}k_6 \partial _b \left( \int _{\Gamma _1} \frac{\mathrm{d}s}{|\nabla x|}+\int _{\Gamma _2} \frac{\mathrm{d}s}{|\nabla x|}\right) \\&\quad = \partial _b \left( \int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^{b_1(a,b)} \frac{\mathrm{d}{\tilde{b}}}{\partial _a {\mathcal {X}}({{\tilde{a}}}({\mathcal {X}},{\tilde{b}}),{\tilde{b}})}+\int _{a_1(a,b)}^a -\frac{\mathrm{d}{{\tilde{a}}}}{\partial _b {\mathcal {X}}({{\tilde{a}}},{\tilde{b}}({\mathcal {X}},{{\tilde{a}}}))} \right) \\&\quad = \partial _b {\mathcal {X}}(a,b) \\&\qquad \left( \int _{-\frac{\delta }{{\mathsf {t}}^{3/4}}}^{b_1} \frac{-\partial _{aa}{\mathcal {X}}({{\tilde{a}}}({\mathcal {X}},{\tilde{b}}),{\tilde{b}})\mathrm{d}{\tilde{b}}}{\left( \partial _a {\mathcal {X}}({{\tilde{a}}}({\mathcal {X}},{\tilde{b}}),{\tilde{b}})\right) ^3}+\int _{a_1}^{a} \frac{\partial _{bb}{\mathcal {X}}({{\tilde{a}}},{\tilde{b}}({\mathcal {X}},{{\tilde{a}}}))d{{\tilde{a}}}}{\left( \partial _b {\mathcal {X}}({{\tilde{a}}},{\tilde{b}}({\mathcal {X}},{{\tilde{a}}}))\right) ^3} \right. \\&\qquad \qquad \left. +\frac{1}{\partial _a {\mathcal {X}}(a_1,b_1) \partial _b {\mathcal {X}}(a_1,b_1)} \right) \\&\quad = \partial _b {\mathcal {X}}(a,b) \\&\qquad \left( \int _{-\infty }^{b} \frac{\Psi _1\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2\right) \right) }{\left( 1+3\Psi _1^2\left( p^*\left( {\mathcal {X}}-{\tilde{b}}^2 \right) \right) \right) ^3}\mathrm{d}{\tilde{b}}+ \frac{1}{(1+3p^{*2}a^2)2b} \right. \\&\qquad \qquad \left. +O\left( |{\mathcal {X}}|^{-\frac{7}{6}+\frac{1}{18}}{\mathsf {t}}^{\frac{1}{12}}\right) \right) \\&\quad = \partial _b {\mathcal {Y}}^\Theta +O\left( |{\mathcal {X}}|^{-\frac{2}{3} +\frac{1}{18}} {\mathsf {t}}^{\frac{1}{12}} \right) , \end{aligned}$$

which was the last estimate (5.31) we had to show. We claim that the computations we performed for this right side of the self-similar zone can be adapted in a straightforward way in the case where one has to consider more parts of the curve \(\Gamma \) inside \(Z_0^c\) to parametrise; the integral over \(\Gamma _3\), \(\Gamma _4\) and \(\Gamma _5\) can be treated the very same way, leading to the same result. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collot, C., Ghoul, TE. & Masmoudi, N. Singularities and unsteady separation for the inviscid two-dimensional Prandtl system. Arch Rational Mech Anal 240, 1349–1430 (2021). https://doi.org/10.1007/s00205-021-01637-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01637-4

Navigation