Skip to main content
Log in

The Inviscid Limit for the Navier–Stokes Equations with Data Analytic Only Near the Boundary

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We address the inviscid limit for the Navier–Stokes equations in a half space, with initial datum that is analytic only close to the boundary of the domain, and that has Sobolev regularity in the complement. We prove that for such data the solution of the Navier–Stokes equations converges in the vanishing viscosity limit to the solution of the Euler equation, on a constant time interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alexandre, R., Wang, Y.-G., Xu, C.-J., Yang, T.: Well-posedness of the Prandtl equation in Sobolev spaces. J. Am. Math. Soc. 28, 745–784, 2014

    MathSciNet  MATH  Google Scholar 

  2. Anderson, C.R.: Vorticity boundary conditions and boundary vorticity generation for two-dimensional viscous incompressible flows. J. Comput. Phys. 81(1), 72–97, 1989

    ADS  MATH  Google Scholar 

  3. Bardos, C., Titi, E.S.: Mathematics and turbulence: where do we stand? 2013. arXiv preprint arXiv:1301.0273

  4. Bona, J.L., Wu, J.: The zero-viscosity limit of the 2D Navier–Stokes equations. Stud. Appl. Math. 109(4), 265–278, 2002

    MathSciNet  MATH  Google Scholar 

  5. Caflisch, R., Sammartino, M.: Navier-Stokes equations on an exterior circular domain: construction of the solution and the zero viscosity limit. C. R. Acad. Sci. Paris Sér. I Math. 324(8), 861–866, 1997

    ADS  MathSciNet  MATH  Google Scholar 

  6. Constantin, P., Elgindi, T., Ignatova, M., Vicol, V.: Remarks on the inviscid limit for the Navier–Stokes equations for uniformly bounded velocity fields. SIAM J. Math. Anal. 49(3), 1932–1946, 2017

    MathSciNet  MATH  Google Scholar 

  7. Constantin, P., Kukavica, I., Vicol, V.: On the inviscid limit of the Navier–Stokes equations. Proc. Am. Math. Soc. 143(7), 3075–3090, 2015

    MathSciNet  MATH  Google Scholar 

  8. Constantin, P., Lopes Filho, M.C., Nussenzveig Lopes, H.J., Vicol, V.: Vorticity measures and the inviscid limit. Arch. Ration. Mech. Anal. 234(2), 575–593, 2019

    MathSciNet  MATH  Google Scholar 

  9. Constantin, P., Vicol, V.: Remarks on high Reynolds numbers hydrodynamics and the inviscid limit. J. Nonlinear Sci. 28(2), 711–724, 2018

    ADS  MathSciNet  MATH  Google Scholar 

  10. Dietert, H., Gérard-Varet, D.: Well-posedness of the Prandtl equations without any structural assumption. Ann. PDE5(1), 8, 2019

    MathSciNet  MATH  Google Scholar 

  11. Drivas, T.D., Nguyen, H.Q.: Remarks on the emergence of weak Euler solutions in the vanishing viscosity limit. J. Nonlinear Sci. 29, 709–721, 2018

    ADS  MathSciNet  MATH  Google Scholar 

  12. Fei, M., Tao, T., Zhang, Z.: On the zero-viscosity limit of the Navier–Stokes equations in the half-space, 2016. arXiv:1609.03778

  13. Fei, N., Tao, T., Zhang, Z.: On the zero-viscosity limit of the Navier–Stokes equations in \({R}^3_+\) without analyticity. J. Math. Pures Appl. 112, 170–229, 2018

    MathSciNet  MATH  Google Scholar 

  14. Gérard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609, 2010

    MathSciNet  MATH  Google Scholar 

  15. Gérard-Varet, D., Maekawa, Y.: Sobolev stability of Prandtl expansions for the steady Navier–Stokes equations, 2018. arXiv preprint arXiv:1805.02928

  16. Gérard-Varet, D., Maekawa, Y., Masmoudi, N.: Gevrey stability of Prandtl expansions for 2D Navier–Stokes, 2016. arXiv:1607.06434

  17. Gérard-Varet, D., Masmoudi, N.: Well-posedness for the Prandtl system without analyticity or monotonicity. Ann. Sci. Éc. Norm. Supér. (4)48(6), 1273–1325, 2015

    MathSciNet  MATH  Google Scholar 

  18. Gérard-Varet, D., Nguyen, T.T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77, 71–88, 2012

    MathSciNet  MATH  Google Scholar 

  19. Grenier, E.: On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 53(9), 1067–1091, 2000

    MathSciNet  MATH  Google Scholar 

  20. Grenier, E., Guo, Y., Nguyen, T.T.: Spectral stability of Prandtl boundary layers: an overview. Analysis35(4), 343–255, 2015

    MathSciNet  MATH  Google Scholar 

  21. Grenier, E., Guo, Y., Nguyen, T.T.: Spectral instability of general symmetric shear flows in a two-dimensional channel. Adv. Math. 292, 52–110, 2016

    MathSciNet  MATH  Google Scholar 

  22. Grenier, E., Nguyen, T.T.: On nonlinear instability of Prandtl’s boundary layers: the case of Rayleigh’s stable shear flows, 2017. arXiv preprint arXiv:1706.01282

  23. Grenier, E., Nguyen, T.T.: \(L^\infty \) instability of Prandtl layers, 2018. arXiv preprint arXiv:1803.11024

  24. Guo, Y., Iyer, S.: Steady Prandtl layer expansions with external forcing, 2018. arXiv preprint arXiv:1810.06662

  25. Guo, Y., Iyer, S.: Validity of steady Prandtl layer expansions, 2018. arXiv preprint arXiv:1805.05891

  26. Guo, Y., Nguyen, T.T.: A note on Prandtl boundary layers. Commun. Pure Appl. Math. 64(10), 1416–1438, 2011

    MathSciNet  MATH  Google Scholar 

  27. Han, D., Mazzucato, A.L., Niu, D., Wang, X.: Boundary layer for a class of nonlinear pipe flow. J. Differ. Equ. 252(12), 6387–6413, 2012

    ADS  MathSciNet  MATH  Google Scholar 

  28. Ignatova, M., Vicol, V.: Almost global existence for the Prandtl boundary layer equations. Arch. Ration. Mech. Anal. 220(2), 809–848, 2016

    MathSciNet  MATH  Google Scholar 

  29. Iyer, S.: On global-in-\(x\) stability of Blasius profiles, 2018. arXiv preprint arXiv:1812.03906

  30. Kato, T.: Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary. Seminar on Nonlinear Partial Differential Equations (Berkeley, Calif., 1983), volume 2 of Math. Sci. Res. Inst. Publ. Springer, New York, 85–98, 1984

  31. Kelliher, J.P.: Vanishing viscosity and the accumulation of vorticity on the boundary. Commun. Math. Sci. 6(4), 869–880, 2008

    MathSciNet  MATH  Google Scholar 

  32. Kelliher, J.P.: On the vanishing viscosity limit in a disk. Math. Ann. 343(3), 701–726, 2009

    MathSciNet  MATH  Google Scholar 

  33. Kelliher, J.P.: Observations on the vanishing viscosity limit. Trans. Am. Math. Soc. 369(3), 2003–2027, 2017

    MathSciNet  MATH  Google Scholar 

  34. Kukavica, I., Lombardo, M.C., Sammartino, M.: Zero viscosity limit for analytic solutions of the primitive equations. Arch. Ration. Mech. Anal. 222(1), 15–45, 2016

    MathSciNet  MATH  Google Scholar 

  35. Kukavica, I., Masmoudi, N., Vicol, V., Wong, T.K.: On the local well-posedness of the Prandtl and the hydrostatic Euler equations with multiple monotonicity regions. SIAM J. Math. Anal. 46(6), 3865–3890, 2014

    MathSciNet  MATH  Google Scholar 

  36. Kukavica, I., Vicol, V.: On the local existence of analytic solutions to the Prandtl boundary layer equations. Commun. Math. Sci. 11(1), 269–292, 2013

    MathSciNet  MATH  Google Scholar 

  37. Li, W.-X., Yang, T.: Well-posedness in Gevrey space for the Prandtl equations with non-degenerate critical points, 2016. arXiv preprint arXiv:1609.08430

  38. Liu, C.-J., Yang, T.: Ill-posedness of the Prandtl equations in Sobolev spaces around a shear flow with general decay. J. Math. Pures Appl. 108(2), 150–162, 2017

    MathSciNet  MATH  Google Scholar 

  39. Lombardo, M.C., Cannone, M., Sammartino, M.: Well-posedness of the boundary layer equations. SIAM J. Math. Anal. 35(4), 987–1004, 2003. (electronic)

    MathSciNet  MATH  Google Scholar 

  40. Lombardo, M.C., Sammartino, M.: Zero viscosity limit of the Oseen equations in a channel. SIAM J. Math. Anal. 33(2), 390–410, 2001

    MathSciNet  MATH  Google Scholar 

  41. Lopes Filho, M.C., Mazzucato, A.L., Nussenzveig Lopes, H.J.: Vanishing viscosity limit for incompressible flow inside a rotating circle. Physica D237(10–12), 1324–1333, 2008

    ADS  MathSciNet  MATH  Google Scholar 

  42. Lopes Filho, M.C., Mazzucato, A.L., Nussenzveig Lopes, H.J., Taylor, M.: Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows. Bull. Braz. Math. Soc. (N.S.)39(4), 471–513, 2008

    MathSciNet  MATH  Google Scholar 

  43. Maekawa, Y.: Solution formula for the vorticity equations in the half plane with application to high vorticity creation at zero viscosity limit. Adv. Differ. Equ. 18(1/2), 101–146, 2013

    MathSciNet  MATH  Google Scholar 

  44. Maekawa, Y.: On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Commun. Pure Appl. Math. 67(7), 1045–1128, 2014

    MathSciNet  MATH  Google Scholar 

  45. Maekawa, Y., Mazzucato, A.: The inviscid limit and boundary layers for Navier–Stokes flows. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 1–48. 2016

  46. Masmoudi, N.: The Euler limit of the Navier–Stokes equations, and rotating fluids with boundary. Arch. Ration. Mech. Anal. 142(4), 375–394, 1998

    MathSciNet  MATH  Google Scholar 

  47. Masmoudi, N., Wong, T.K.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure Appl. Math. 68(10), 1683–1741, 2015

    MathSciNet  MATH  Google Scholar 

  48. Matsui, S.: Example of zero viscosity limit for two dimensional nonstationary Navier–Stokes flows with boundary. Jpn J Ind Appl Math11(1), 155, 1994

    MathSciNet  MATH  Google Scholar 

  49. Mazzucato, A., Taylor, M.: Vanishing viscosity plane parallel channel flow and related singular perturbation problems. Anal. PDE1(1), 35–93, 2008

    MathSciNet  MATH  Google Scholar 

  50. Nguyen, T.T., Nguyen, T.T.: The inviscid limit of Navier–Stokes equations for analytic data on the half-space. Arch. Ration. Mech. Anal. 230(3), 1103–1129, 2018

    MathSciNet  MATH  Google Scholar 

  51. Oleinik, O.A.: On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid. J. Appl. Math. Mech. 30(951–974), 1966, 1967

    MathSciNet  Google Scholar 

  52. Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions, of the Navier–Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433–461, 1998

    ADS  MathSciNet  MATH  Google Scholar 

  53. Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. II. Construction of the Navier–Stokes solution. Commun. Math. Phys. 192(2), 463–491, 1998

    ADS  MathSciNet  MATH  Google Scholar 

  54. Temam, R., Wang, X.: On the behavior of the solutions of the Navier–Stokes equations at vanishing viscosity. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4)25(3–4), 807–828, 1998. 1997. Dedicated to Ennio De Giorgi

    MathSciNet  MATH  Google Scholar 

  55. Wang, C., Wang, Y., Zhang, Z.: Zero-viscosity limit of the Navier–Stokes equations in the analytic setting. Arch. Ration. Mech. Anal. 224(2), 555–595, 2017

    MathSciNet  MATH  Google Scholar 

  56. Wang, X.: A Kato type theorem on zero viscosity limit of Navier–Stokes flows. Indiana Univ. Math. J. 50(Special Issue), 223–241, 2001. Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

IK was supported in part by the NSF Grant DMS-1907992, while VV was supported in part by the NSF CAREER Grant DMS-1911413.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlad Vicol.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animals Rights

This research does not involve Human Participants and/or Animals. The manuscript complies to the Ethical Rules applicable for the Archive for Rational Mechanics and Analysis.

Additional information

Communicated by P. Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proofs of Some Technical Lemmas

Appendix A. Proofs of Some Technical Lemmas

Here we list some technical lemmas.

The next lemma converts an \(\ell ^1\) norm in \(\xi \) to an \(\ell ^2\) norm, which is necessary when converting \(S_\mu \) norms to an S and hence a Z norm.

Lemma A.1

Let \(\mu \in (0,1)\). We have

$$\begin{aligned} \sum _{i+j\leqq 2}&\Vert \partial _x^i (y\partial _{y})^j\omega \Vert _{S_\mu } \lesssim \sum _{i+j\leqq 2} \left\| \partial _x^i(y\partial _{y})^j\omega \right\| _S + \left\| \partial _x^{i+1}(y\partial _{y})^j\omega \right\| _S . \end{aligned}$$

Proof of Lemma A.1

We have

$$\begin{aligned}&\sum _{\xi } |v_{\xi }| \lesssim \biggl ( \sum _{\xi } (1+|\xi |^2)|v_{\xi }|^2 \biggr )^{1/2} \end{aligned}$$
(A.1)

for every v for which the right side is finite. The inequality (A.1) holds since \(\sum _{\xi }(1+|\xi |^2)^{-1}<\infty \). \(\quad \square \)

Lemma A.2

Assume that the parameters \(\mu , \mu _0,\gamma , t > 0\) obey \(\mu < \mu _0 - \gamma t\). Then, for \(\alpha \in (0,\frac{1}{2})\) we have

$$\begin{aligned} \int _0^t \frac{1}{\sqrt{t-s}}\frac{1}{(\mu _0-\mu -\gamma s)^{1+\alpha }}\,\hbox {d}s \leqq \frac{C}{\sqrt{\gamma }(\mu _0-\mu -\gamma t)^{1/2+\alpha }} \end{aligned}$$
(A.2)

and

$$\begin{aligned} \int _0^t \frac{1}{\sqrt{t-s}}\frac{1}{(\mu _0-\mu -\gamma s)^{\alpha }}\,\hbox {d}s \leqq \frac{C}{\sqrt{\gamma }} , \end{aligned}$$
(A.3)

where \(C>0\) is a constant depending on \(\mu _0\) and \(1/2-\alpha \).

Proof of Lemma A.2

Changing variables \(s'=\gamma s\), \(t'=\gamma t \), and letting \(\mu _0 - \mu = \mu ' > 0\), the left side of (A.2) is rewritten and bounded as

$$\begin{aligned} \int _0^{t'} \frac{\sqrt{\gamma }}{\sqrt{t'- s'}}\frac{1}{(\mu '- s')^{1+\alpha }}\, \frac{\hbox {d} s'}{\gamma }&\leqq \frac{1}{\sqrt{\gamma }(\mu '- t')^{\alpha } } \int _0^{t'} \frac{\hbox {d} s'}{\sqrt{t'- s'}(\mu '- s')} \\&= \frac{2 \arctan \left( \sqrt{\frac{t'}{\mu '-t'}}\right) }{\sqrt{\gamma }(\mu '- t')^{1/2+ \alpha } } \lesssim \frac{1}{\sqrt{\gamma }(\mu '- t')^{1/2+ \alpha } } \\&= \frac{1}{\sqrt{\gamma }(\mu _0-\mu -\gamma t)^{1/2+ \alpha } } . \end{aligned}$$

In order to prove (A.3), we proceed similarly and use \(\mu ' > t'\) to deduce

$$\begin{aligned} \int _0^{t'} \frac{\sqrt{\gamma }}{\sqrt{t'- s'}}\frac{1}{(\mu '- s')^{\alpha }}\, \frac{\hbox {d} s'}{\gamma } \leqq \frac{1}{\sqrt{\gamma }} \int _0^{t'} \frac{\hbox {d} s'}{(t'- s')^{1/2+\alpha }} \lesssim \frac{1}{\sqrt{\gamma }} , \end{aligned}$$

where the implicit constant may depend on \(\mu _0\) and \(1/2-\alpha \). \(\quad \square \)

Lemma A.3

(Analyticity recovery for the X norm). For \({\widetilde{\mu }}>\mu \geqq 0\), we have

$$\begin{aligned} \sum _{i+j=1}\Vert \partial _{x}^i(y\partial _{y})^jf\Vert _{X_\mu } \lesssim \frac{1}{{\widetilde{\mu }}-\mu }\Vert f\Vert _{X_{{{\widetilde{\mu }}}}} . \end{aligned}$$

Proof of Lemma A.3

First, let \((i,j)=(1,0)\). According to the definition of the \(X_\mu \) norm, and using that the bound \(({\widetilde{\mu }}-\mu ) |\xi | e^{\epsilon _0 |\xi | ( (1+\mu -y)_+ - (1+{\widetilde{\mu }}-y)_+)} \lesssim 1\) holds on \(\Omega _\mu \), we have

$$\begin{aligned} \Vert \partial _{x}f \Vert _{X_\mu }&= \sum _\xi \Vert \xi e^{\epsilon _0(1+\mu -y)_+|\xi |} f_\xi \Vert _{{\mathcal {L}}^\infty _{\mu ,\nu }} \lesssim \frac{1}{{\widetilde{\mu }}-\mu }\sum _\xi \Vert e^{\epsilon _0(1+{\widetilde{\mu }}-y)_+|\xi |} f_\xi \Vert _{{\mathcal {L}}^\infty _{\mu ,\nu }} \\&\lesssim \frac{1}{{\widetilde{\mu }}-\mu }\sum _\xi \Vert e^{\epsilon _0(1+{\widetilde{\mu }}-y)_+|\xi |} f_\xi \Vert _{{\mathcal {L}}^\infty _{{\widetilde{\mu }}, \nu }} = \frac{1}{{\widetilde{\mu }}-\mu }\Vert f \Vert _{X_{{\widetilde{\mu }}}} . \end{aligned}$$

Next, consider \((i,j)=(0,1)\). By the Cauchy integral theorem, we have

$$\begin{aligned} \partial _{y}f_\xi (y) = \int _{C(y, R_y)} \frac{f_\xi (z)}{(y-z)^2}\,\hbox {d}z , \end{aligned}$$
(A.4)

where \(C(y, R_y)\) is the circle centered at y with radius \(R_y\). Hence, we have

$$\begin{aligned} |\partial _{y}f_\xi (y)| \lesssim \frac{1}{R_y}\sup _{z\in C(y, R_y)} |f_\xi (z)| . \end{aligned}$$

By taking \(R_y=C^{-1}({\widetilde{\mu }}-\mu ){{\mathbb {R}}}\mathrm {e}\,y\), for a sufficiently large universal constant \(C>0\), we obtain

$$\begin{aligned} \Vert y\partial _{y}f \Vert _{X_\mu }&= \sum _\xi \Vert e^{\epsilon _0(1+\mu -y)_+|\xi |}y\partial _{y}f_\xi \Vert _{{\mathcal {L}}^\infty _{\mu ,\nu }} \lesssim \frac{1}{{\widetilde{\mu }}-\mu }\sum _\xi \Vert e^{\epsilon _0(1+\mu -y)_+|\xi |} f_\xi \Vert _{{\mathcal {L}}^\infty _{{\widetilde{\mu }}, \nu }} \\&\lesssim \frac{1}{{\widetilde{\mu }}-\mu }\sum _\xi \Vert e^{\epsilon _0(1+{\widetilde{\mu }}-y)_+|\xi |} f_\xi \Vert _{{\mathcal {L}}^\infty _{{\widetilde{\mu }}, \nu }} = \frac{1}{{\widetilde{\mu }}-\mu }\Vert f \Vert _{X_{{\widetilde{\mu }}}} , \end{aligned}$$

concluding the proof. \(\quad \square \)

Lemma A.4

(Analyticity recovery for the \(Y\) norm). Let \(\mu _0\geqq {\widetilde{\mu }}>\mu \geqq 0\). Then we have

$$\begin{aligned} \sum _{i+j=1}\Vert \partial _{x}^i(y\partial _{y})^jf\Vert _{Y_\mu } \lesssim \frac{1}{{\widetilde{\mu }}-\mu }\Vert f\Vert _{Y_{{\widetilde{\mu }}}} . \end{aligned}$$
(A.5)

Proof of Lemma A.4

By the same argument which yielded the X norm estimate in Lemma A.3, we obtain

$$\begin{aligned} \Vert \partial _{x}f \Vert _{Y_\mu }&= \sum _\xi \Vert \xi e^{\epsilon _0(1+\mu -y)_+|\xi |} f_\xi \Vert _{{\mathcal {L}}^1_\mu } \lesssim \frac{1}{{\widetilde{\mu }}-\mu }\sum _\xi \Vert e^{\epsilon _0(1+{\widetilde{\mu }}-y)_+|\xi |} f_\xi \Vert _{{\mathcal {L}}^1_\mu } \\&\lesssim \frac{1}{{\widetilde{\mu }}-\mu }\sum _\xi \Vert e^{\epsilon _0(1+{\widetilde{\mu }}-y)_+|\xi |} f_\xi \Vert _{{\mathcal {L}}^1_{{\widetilde{\mu }}}} = \frac{1}{{\widetilde{\mu }}-\mu }\Vert f \Vert _{Y_{{\widetilde{\mu }}}} . \end{aligned}$$

In order to prove the estimate (A.5) for \((i,j)=(0,1)\), we use (A.4) to bound

$$\begin{aligned} \Vert y\partial _{y}f_\xi \Vert _{L^1(\partial \Omega _{\theta })} = \int _{\partial \Omega _{\theta }} \left| \int _{C(y, R_y)} \frac{yf_\xi (z)}{(y-z)^2}\,\hbox {d}z\right| \hbox {d}y \lesssim \int _{\partial \Omega _{\theta }} \int _{C(y, R_y)} \frac{|yf_\xi (z)|}{R_y^2}\,\hbox {d}z\hbox {d}y \end{aligned}$$

for any \(0\leqq \theta <\mu \). By taking \(R_y=C^{-1} ({\widetilde{\mu }}-\mu ){{\mathbb {R}}}\mathrm {e}\,y\) for a sufficiently large universal constant \(C>0\), using that |y| is comparable to \({{\mathbb {R}}}\mathrm {e}\,y\) in this region, and applying Fubini’s theorem, we obtain

$$\begin{aligned} \Vert y\partial _{y}f_\xi \Vert _{L^1(\partial \Omega _{\theta })}&\lesssim \frac{1}{{\widetilde{\mu }}-\mu }\int _{\partial \Omega _{\theta }} \int _{C(y, R_y)} \frac{|f_\xi (z)|}{R_y}\,\hbox {d}z\hbox {d}y \\&\lesssim \frac{1}{{\widetilde{\mu }}-\mu }\int _{\partial \Omega _{\theta }} \int _{0}^{2\pi } |f_\xi (y + R_y e^{i\phi } )| \,\hbox {d}\phi \hbox {d}y \\&\lesssim \frac{1}{{\widetilde{\mu }}-\mu } \sup _{{\bar{\theta }} \in \left( \theta - \frac{2({\widetilde{\mu }}-\mu )}{C}, \theta + \frac{2({\widetilde{\mu }}-\mu )}{C}\right) } \left\| f_\xi \right\| _{L^1(\partial \Omega _{{\bar{\theta }}})} \\&\lesssim \frac{1}{{\widetilde{\mu }}-\mu } \Vert f_\xi \Vert _{{\mathcal {L}}^1_{{\widetilde{\mu }}}} , \end{aligned}$$

which proves the claim. Since \(e^{\epsilon _0(1+\mu -y)_{+}|\xi |} \leqq e^{\epsilon _0(1+{\widetilde{\mu }}-y)_{+}|\xi |}\), for every \(y \in \Omega _{\mu }\), the lemma follows. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukavica, I., Vicol, V. & Wang, F. The Inviscid Limit for the Navier–Stokes Equations with Data Analytic Only Near the Boundary. Arch Rational Mech Anal 237, 779–827 (2020). https://doi.org/10.1007/s00205-020-01517-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01517-3

Navigation