Skip to main content
Log in

Stability of Hydraulic Shock Profiles

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We establish nonlinear \(H^2\cap L^1 \rightarrow H^2\) stability with sharp rates of decay in \(L^p\), \(p\ge 2\), of general hydraulic shock profiles, with or without subshocks, of the inviscid Saint-Venant equations of shallow water flow, under the assumption of Evans–Lopatinsky stability of the associated eigenvalue problem. We verify this assumption numerically for all profiles, giving in particular the first nonlinear stability results for shock profiles with subshocks of a hyperbolic relaxation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Though, note the degeneracy at \(\lambda =0\) of spectral curves of roll wave solutions of (1.1) described in [36, Rmks. 2.1 and 5.1], making this case more complicated.

  2. In fact as we show in the following section, they are precisely of order one.

  3. Here \(C^b((-\infty ,0],\;\mathbb {C})\) is the space of bounded continuous function on \((-\infty ,0]\) associated with the sup norm.

  4. Refer to “Appendix A” equation (A.2)(iii) for decomposition of R.

  5. Note that we correct a minor typo in [44, Thm. 4.1.5], which requires data \(v_0\) only in \(H^s\) rather than \(H^{s+1/2}\). (This is not necessary for our later analysis, but only sharpens our initial regularity assumptions.)

  6. Notably, there is no scattering term \(S^1\) when taking \(y=0^\pm \).

References

  1. Alexander, J., Gardner, R., Jones, C.K.R.T.: A topological invariant arising in the analysis of traveling waves. J. Reine Angew. Math. 410, 167–212, 1990

    MathSciNet  MATH  Google Scholar 

  2. Barker, B., Humpherys, J., Rudd, K., Zumbrun, K.: Stability of viscous shocks in isentropic gas dynamics. Commun. Math. Phys. 281(1), 231–249, 2008

    ADS  MathSciNet  MATH  Google Scholar 

  3. Barker, B., Humpherys, J., Zumbrun, K.: One-dimensional stability of parallel shock layers in isentropic magnetohydrodynamics. J. Diff. Eq. 249(9), 2175–2213, 2010

    ADS  MathSciNet  MATH  Google Scholar 

  4. Barker, B., Johnson, M.A., Noble, P., Rodrigues, L.-M., Zumbrun, K.: Stability of St Venant roll-waves: from onset to the large Froude number limit. J. Nonlinear Sci. 27, 285–342, 2017

    ADS  MathSciNet  MATH  Google Scholar 

  5. Boudlal, A., Liapidevskii, V.Y.: Stabilité de trains d’ondes dans un canal découvert, C.R. Mécanique330, 291–295 (2002)

  6. Barker, B., Lafitte, O., Zumbrun, K.: Existence and stability of viscous shock profiles for 2-D isentropic MHD with infinite electrical resistivity. Acta Math. Sci. Ser. B Engl. Ed. 30(2), 447–498, 2010

    MathSciNet  MATH  Google Scholar 

  7. Barker, B., Lewicka, M., Zumbrun, K.: Existence and stability of viscoelastic shock profiles. Arch. Ration. Mech. Anal. 200(2), 491–532, 2011

    MathSciNet  MATH  Google Scholar 

  8. Balmforth, N.J., Mandre, S.: Dynamics of roll waves. J. Fluid Mech. 514, 1–33, 2004

    ADS  MathSciNet  MATH  Google Scholar 

  9. Bressan, A.: Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem, Oxford Lecture Series in Mathematics and its Applications, 20. Oxford University Press, Oxford, 2000. xii+250 pp. ISBN: 0-19-850700-3.

  10. Brock, R.R.: Development of roll-wave trains in open channels. J. Hydraul. Div., Am. Soc. Civ. Eng. 95(4), 1401–1428, 1969

    Google Scholar 

  11. Brock, R.R.: Periodic permanent roll waves. J. Hydraul. Div., Am. Soc. Civ. Eng. 96(12), 2565–2580, 1970

    Google Scholar 

  12. Benzoni-Gavage, S., Serre, D.: Multidimensional hyperbolic partial differential equations. First-order systems and applications, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. xxvi+508 pp. ISBN: 978-0-19-921123-4; 0-19-921123-X.

  13. Mandli, K.T., Ahmadia, A.J., Berger, M.J., Calhoun, D.A., George, D.L., Hadjimichael, Y., Ketcheson, D.I., Lemoine, G.I., LeVeque, R.J.: Clawpack: building an open source ecosystem for solving hyperbolic PDEs. Peer J Comput. Sci. 2, e68, 2016

    Google Scholar 

  14. Clawpack Development Team (2017) Clawpack Version 5.4.0, http://www.clawpack.org. https://doi.org/10.5281/zenodo.262111.

  15. Doetsch, G.: Introduction to the Theory and Application of the Laplace Transformation, p. 326. Springer-Verlag, New York 1974

    MATH  Google Scholar 

  16. Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics, p. 325. Springer Verlag, Berlin 2000

    MATH  Google Scholar 

  17. Dressler, R.F.: Mathematical solution of the problem of roll-waves in inclined open channels. Commun. Pure Appl. Math2, 149–194, 1949

    MathSciNet  MATH  Google Scholar 

  18. Henry, D.: Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, p. 348. Springer-Verlag, Berlin 1981

    Google Scholar 

  19. Duchêne, V., Rodrigues, L.-M.: Large-time asymptotic stability of Riemann shocks of scalar balance laws, preprint. arXiv:1810.08481

  20. Duchêne, V., Rodrigues, L.-M.: Stability in scalar balance laws: fronts and periodic waves, in preparation.

  21. Erpenbeck, J.J.: Stability of steady-state equilibrium detonations. Phys. Fluids5, 604–614, 1962

    ADS  MathSciNet  Google Scholar 

  22. Erpenbeck, J.J.: Stability of step shocks. Phys. Fluids5(10), 1181–1187, 1962

    ADS  MathSciNet  MATH  Google Scholar 

  23. Friedrichs, K.O.: Symmetric hyperbolic linear differential equations. Commun. Pure Appl. Math. 7, 345–392, 1954

    MathSciNet  MATH  Google Scholar 

  24. Friedrichs, K.O.: On the laws of relativistic electro-magneto-fluid dynamics. Commun. Pure Appl. Math. 27, 749–808, 1974

    ADS  MATH  Google Scholar 

  25. Gardner, R.A., Zumbrun, K.: The gap lemma and geometric criteria for instability of viscous shock profiles. Commun. Pure Appl. Math. 51(7), 797–855, 1998

    MathSciNet  MATH  Google Scholar 

  26. Humpherys, J.: Admissibility of viscous-dispersive systems. J. Hyperbolic Differ. Equ. 2(4), 963–974, 2005

    MathSciNet  MATH  Google Scholar 

  27. Humpherys, J., Lyng, G., Zumbrun, K.: Spectral stability of ideal gas shock layers. Arch. Ration. Mech. Anal. 194(3), 1029–1079, 2009

    MathSciNet  MATH  Google Scholar 

  28. Howard, P.: Pointwise Green’s function approach to stability for scalar conservation laws. Commun. Pure Appl. Math. 52(10), 1295–1313, 1999

    MathSciNet  MATH  Google Scholar 

  29. Howard, P., Raoofi, M., Zumbrun, K.: Sharp pointwise bounds for perturbed viscous shock waves. J. Hyperbolic Differ. Equ. 3(2), 297–373, 2006

    MathSciNet  MATH  Google Scholar 

  30. Howard, P., Zumbrun, K.: Stability of undercompressive shock profiles. J. Differ. Equ. 225(1), 308–360, 2006

    ADS  MathSciNet  MATH  Google Scholar 

  31. Humpherys, J., Zumbrun, K.: Efficient numerical stability analysis of detonation waves in ZND. Quart. Appl. Math. 70(4), 685–703, 2012

    MathSciNet  MATH  Google Scholar 

  32. Jeffreys, H.: The flow of water in an inclined channel of rectangular section. Phil. Mag. 49, 793–807, 1925

    MATH  Google Scholar 

  33. Jin, S., Katsoulokis, M.: Hyperbolic systems with supercharacteristic relaxations and roll waves. SIAM J. Appl. Math. 61, 273–292, 2000

    MathSciNet  MATH  Google Scholar 

  34. Jenssen, H.K., Lyng, G., Williams, M.: Equivalence of low-frequency stability conditions for multidimensional detonations in three models of combustion. Indiana Univ. Math. J. 54, 1–64, 2005

    MathSciNet  MATH  Google Scholar 

  35. Johnson, M.A., Noble, P., Rodrigues, L.M., Zumbrun, K.: Behavior of periodic solutions of viscous conservation laws under localized and nonlocalized perturbations. Invent. Math. 197(1), 115–213, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  36. Johnson, M., Noble, P., Rodrigues, L.M., Yang, Z., Zumbrun, K.: Spectral stability of inviscid roll waves, Preprint 2018.

  37. Johnson, M., Zumbrun, K., Noble, P.: Nonlinear stability of viscous roll waves. SIAM J. Math. Anal. 43(2), 577–611, 2011

    MathSciNet  MATH  Google Scholar 

  38. Kawashima, S.: Systems of a hyperbolic–parabolic composite type, with applications to the equations of magnetohydrodynamics, thesis, Kyoto University (1983)

  39. Kreiss, H.O.: Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math. 23, 277–298, 1970

    MathSciNet  MATH  Google Scholar 

  40. Liu, T.-P.: Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 108(1), 153–175, 1987

    ADS  MathSciNet  MATH  Google Scholar 

  41. Liu, T.-P.: Nonlinear stability of shock waves for viscous conservation laws. Mem. Am. Math. Soc. 56(328), 233, 1985

    ADS  MathSciNet  MATH  Google Scholar 

  42. Lax, P.D.: Hyperbolic systems of conservation laws. II. Commun. Pure Appl. Math. 10, 537–566, 1957

    MATH  Google Scholar 

  43. Majda, A.: The stability of multidimensional shock fronts. Mem. Am. Math. Soc. No. 275, AMS, Providence (1983)

  44. Métivier, G.: Stability of multidimensional shocks, Advances in the theory of shock waves, 25–103, Progr. Nonlinear Differential Equations, Appl., 47, Birkhäuser Boston, Boston, MA, 2001

  45. Métivier, G., Zumbrun, K.: Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Mem. Am. Math. Soc. 175(826), 107, 2005

    MathSciNet  MATH  Google Scholar 

  46. Mailybaev, A., Marchesin, D.: Private communication; Conservation Laws and Applications conference, IMPA, Rio de Janeiro, August 2017

  47. Mascia, C., Zumbrun, K.: Pointwise Green’s function bounds and stability of relaxation shocks. Indiana Univ. Math. J. 51(4), 773–904, 2002

    MathSciNet  MATH  Google Scholar 

  48. Mascia, C., Zumbrun, K.: Stability of large-amplitude shock profiles of general relaxation systems. SIAM J. Math. Anal. 37(3), 889–913, 2005

    MathSciNet  MATH  Google Scholar 

  49. Mascia, C., Zumbrun, K.: Spectral stability of weak relaxation shock profiles. Commun. Partial Differ. Equ. 34(1–3), 119–136, 2009

    MathSciNet  MATH  Google Scholar 

  50. Mascia, C., Zumbrun, K.: Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems. Arch. Ration. Mech. Anal. 172(1), 93–131, 2004

    MathSciNet  MATH  Google Scholar 

  51. Nguyen, T., Zumbrun, K.: Long-time stability of large-amplitude noncharacteristic boundary layers for hyperbolic parabolic systems. J. Math. Pures Appl. 92(6), 547–598, 2009

    MathSciNet  MATH  Google Scholar 

  52. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, 44, Springer-Verlag, New York-Berlin, 1983 viii+279 pp. ISBN: 0-387-90845-5.

  53. Pego, R.L., Weinstein, M.I.: Eigenvalues, and instabilities of solitary waves. Philos. Trans. R. Soc. Lond. Ser. A. 340, 47–94, 1992

    ADS  MathSciNet  MATH  Google Scholar 

  54. Richard, G.L., Gavrilyuk, S.L.: A new model of roll waves: comparison with Brock’s experiments. J. Fluid Mech. 698, 374–405, 2012

    ADS  MathSciNet  MATH  Google Scholar 

  55. Richard, G.L., Gavrilyuk, S.L.: The classical hydraulic jump in a model of shear shallow-water flows. J. Fluid Mech. 725, 492–521, 2013

    ADS  MathSciNet  MATH  Google Scholar 

  56. Raaofi, M., Zumbrun, K.: Stability of undercompressive viscous shock profiles of hyperbolic-parabolic systems. J. Differ. Equ. 246(4), 1539–1567, 2009

    ADS  MathSciNet  MATH  Google Scholar 

  57. Rodrigues, L.M.: Private communication: Sobolev-based analysis of long-time stability of discontinuous periodic waves

  58. Rodrigues, L.M., Zumbrun, K.: Periodic-coefficient damping estimates, and stability of large-amplitude roll waves in inclined thin film flow. SIAM J. Math. Anal. 48(1), 268–280, 2016

    MathSciNet  MATH  Google Scholar 

  59. Sattinger, D.: On the stability of waves of nonlinear parabolic systems. Adv. Math. 22, 312–355, 1976

    MathSciNet  MATH  Google Scholar 

  60. Serre, D.: Systems of conservation laws. 1. Hyperbolicity, entropies, shock waves, Translated from the 1996 French original by I. N. Sneddon. Cambridge University Press, Cambridge, 1999. xxii+263 pp. ISBN: 0-521-58233-4

  61. Serre, D.: Systems of conservation laws. 2. Geometric structures, oscillations, and initial-boundary value problems, Translated from the 1996 French original by I. N. Sneddon. Cambridge University Press, Cambridge, 2000. xii+269 pp. ISBN: 0-521-63330-3

  62. Smoller, J.: Shock Waves and Reaction–Diffusion Equations, 2nd edn. Springer-Verlag, New York 1994

    MATH  Google Scholar 

  63. Sukhtayev, A., Yang, Z., Zumbrun, K.: Spectral stability of hydraulic shock profiles, to appear, Physica D: Nonlinear Phenomena, arXiv:1810.01490

  64. Texier, B., Zumbrun, K.: Galloping instability of viscous shock waves. Phys. D237, 1553–1601, 2008

    MathSciNet  MATH  Google Scholar 

  65. Whitham, G.B.: Linear and Nonlinear Waves, Pure and Applied Mathematics (New York), John Wiley & Sons Inc., New York, 1999. Reprint of the 1974 original, A Wiley-Interscience Publication

  66. Yong, W.-A.: Basic aspects of hyperbolic relaxation systems, in “Advances in the theory of shock waves”, 259–305, Progr. Nonlinear Differential Equations Appl., 47, Birkhäuser Boston, Boston, MA, 2001

  67. Yarahmadian, S., Zumbrun, K.: Pointwise green function bounds and long-time stability of large-amplitude noncharacteristic boundary layers. SIAM J. Math. Anal. 40(6), 2328–2350, 2009

    MathSciNet  MATH  Google Scholar 

  68. Yong, W.-A., Zumbrun, K.: Existence of relaxation shock profiles for hyperbolic conservation laws. SIAM J. Appl. Math. 60(5), 1565–1575, 2000

    MathSciNet  MATH  Google Scholar 

  69. Zumbrun, K., Howard, P.: Pointwise semigroup methods and stability of viscous shock waves. Indiana Mathematics Journal V47 1998, 741-871; Errata, Indiana Univ. Math. J. 51(4), 1017–1021 (2002)

  70. Zumbrun, K.: High-frequency asymptotics and 1-D stability of ZND detonations in the small-heat release and high-overdrive limits. Arch. Ration. Mech. Anal. 203(3), 701–717, 2012

    MathSciNet  MATH  Google Scholar 

  71. Zumbrun, K.: Stability of detonation waves in the ZND limit. Arch. Ration. Mech. Anal. 200(1), 141–182, 2011

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank L. Miguel Rodrigues, Pascal Noble, and Mat Johnson for numerous enlightening discussions on the Saint-Venant equations and shallow water flow. In particular, discussions in the course of our collaboration [36] on the parallel case of discontinuous periodic waves, and especially ideas of Rodrigues [57] toward the associated nonlinear stability problem, were crucial in our approach to the simpler case of discontinuous shock profiles treated here. Thanks also to Alexei Mailybaev and Dan Marchesin [46] for discussions on singular detonation waves in relaxation models for combustion that were the immediate impetus for our study of hydraulic shock profiles. Thanks to University Information Technology Services (UITS) division from Indiana University for providing the Karst supercomputer environment in which most of our computations were carried out. This research was supported in part by Lilly Endowment, Inc., through its support for the Indiana University Pervasive Technology Institute, and the Indiana METACyt Initiative. The Indiana METACyt Initiative at IU was also supported in part by Lilly Endowment, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Yang.

Additional information

Communicated by A. Bressan

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of Z.Y. was partially supported by the Hazel King Thompson Summer Reading Fellowship, a Mathematics Department Research Assistantship, and the College of Arts and Sciences Dissertation Year Fellowship. Research of K.Z. was partially supported under NSF Grant Nos. DMS-1400555 and DMS-1700279.

Appendices

Appendix A. Decomposition Map

The decomposition of Green kernel function G can be summarized as

$$\begin{aligned}&G=\chi _{|x-y|/t<S}\left( I+II+III\right) ,\quad I=\chi _{t\le 1}I+\chi _{t> 1}I,\nonumber \\&\chi _{t> 1}I=\chi _{t> 1}(I^1+I^2),\nonumber \\&I^1=I^1_S+I^1_R=I_{S1}^1+I_{S2}^1+I_{S3}^1+I_{R1}^1+I_{R2}^1+I_{R3}^1,\nonumber \\&I^2=I^2_{R1}+I_{R2}^2+I_{R3}^2,\nonumber \\&I_{S2}^1=\chi _{\frac{\bar{\alpha }}{p}>\varepsilon }I_{S2}^1+\chi _{\frac{\bar{\alpha }}{p}\le \varepsilon }\left( S^1+I_{S2Ri}^1+I_{S2Rii}^1\right) ,\\&I_{R2}^{1,2}=\chi _{\frac{\bar{\alpha }}{p}>\varepsilon }I_{R2}^{1,2}+\chi _{\frac{\bar{\alpha }}{p}\le \varepsilon }I_{R2}^{1,2},\nonumber \\&III=III^1+III^2=III^1_a+III^1_b+III^1_c+III^2_a+III^2_b+III^2_c,\nonumber \\&III^{1,2}_a:=H^{1,2},\nonumber \end{aligned}$$
(A.1)

in which we see

$$\begin{aligned} \begin{aligned}&H^{1,2}=\chi _{|x-y|/t<S}III^{1,2}_a,\quad S^1=\chi _{|x-y|/t<S,t>1,\bar{\alpha }/p\le \varepsilon }S^1,\\&R=\chi _{|x-y|/t<S}\left( II+III^{1,2}_{b,c}+\chi _{t\le 1}I\right. \\&\quad \left. +\chi _{t> 1}\left( I^1_{S1,S3,R}+\chi _{\frac{\bar{\alpha }}{p}>\varepsilon }I_{S2}^1+\chi _{\frac{\bar{\alpha }}{p}\le \varepsilon }\left( I_{S2Ri}^{1}+I_{S2Rii}^1\right) +I^2\right) \right) . \end{aligned} \end{aligned}$$
(A.2)

Appendix B. Integral Estimates

\(I^1_{S2Ri}:\) Setting \(f(u)=\frac{1}{\sqrt{4c^2_{2,-}\pi u}}e^{-\frac{(t-c^1_{2,-}(x-y))^2}{4c^2_{2,-} u}}\), yields \(I^1_{S2Ri}=f(\frac{t}{c^1_{2,-}})-f(x-y)\), in which by (7.32) \(\frac{t}{c^1_{2,-}}\) and \(x-y\) are comparable. Writing the difference as an integral yields

$$\begin{aligned} |I^1_{S2Ri}|=\frac{1}{\sqrt{4c^2_{2,-}\pi }}\left| \int _{x-y}^{\frac{t}{c^1_{2,-}}}e^{-\frac{(t-c^1_{2,-}(x-y))^2}{4c^2_{2,-}u}}\frac{\frac{(t-c^1_{2,-}(x-y))^2}{2c^2_{2,-}}-u}{2u^{\frac{5}{2}}}du\right| . \end{aligned}$$
(B.1)

Using that \(\frac{t}{c^1_{2,-}}\) and \(x-y\) are comparable, we have \(e^{-\frac{(t-c^1_{2,-}(x-y))^2}{4c^2_{2,-}u}}\le e^{-\frac{c^1_{2,-}(t-c^1_{2,-}(x-y))^2}{8 c^2_{2,-}t}}\), which, together with \(x^ne^{-x^2}\lesssim e^{-\frac{x^2}{2}}\) for any n positive, yields

$$\begin{aligned}&|I^1_{S2Ri}|\lesssim \int _{x-y}^{\frac{t}{c^1_{2,-}}}\left| e^{-\frac{(t-c^1_{2,-}(x-y))^2}{4c^2_{2,-}u}}\frac{\frac{(t-c^1_{2,-}(x-y))^2}{2c^2_{2,-}}-u}{2u^{\frac{5}{2}}}\right| |du|\nonumber \\&\quad \lesssim e^{-\frac{(t-c^1_{2,-}(x-y))^2}{4c^2_{2,-}\frac{2t}{c^1_{2,-}}}}(t-c^1_{2,-}(x-y))^2\left| \int _{x-y}^{\frac{t}{c^1_{2,-}}}u^{-\frac{5}{2}}du\right| +e^{-\frac{(t-c^1_{2,-}(x-y))^2}{4c^2_{2,-}\frac{2t}{c^1_{2,-}}}}\left| \int _{x-y}^{\frac{t}{c^1_{2,-}}}u^{-\frac{3}{2}}du\right| \nonumber \\&\quad \lesssim e^{-\frac{c^1_{2,-}(t-c^1_{2,-}(x-y))^2}{8c^2_{2,-}t}}(t-c^1_{2,-}(x-y))^2\left| \frac{1}{\left( \frac{t}{c^1_{2,-}}\right) ^{1.5}}-\frac{1}{\left( x-y\right) ^{1.5}}\right| \nonumber \\&\quad +e^{-\frac{c^1_{2,-}(t-c^1_{2,-}(x-y))^2}{8c^2_{2,-}t}}\left| \frac{1}{\left( \frac{t}{c^1_{2,-}}\right) ^{0.5}}-\frac{1}{\left( x-y\right) ^{0.5}}\right| \nonumber \\&\quad \lesssim e^{-\frac{c^1_{2,-}(t-c^1_{2,-}(x-y))^2}{8c^2_{2,-}t}}\frac{(t-c^1_{2,-}(x-y))^3}{t^{2.5}}+e^{-\frac{(t-c^1_{2,-}(x-y))^2}{8c^2_{2,-}t}}\frac{(t-c^1_{2,-}(x-y))}{t^{1.5}}\nonumber \\&\quad \lesssim e^{-\frac{c^1_{2,-}(t-c^1_{2,-}(x-y))^2}{16c^2_{2,-}t}}\frac{1}{t}. \end{aligned}$$
(B.2)

\(\frac{\partial I^1_{S2Ri}}{\partial y}:\)

$$\begin{aligned}&|\frac{\partial I^1_{S2Ri}}{\partial y}|=\frac{1}{\sqrt{4c^2_{2,-}\pi }}\left| \frac{\partial }{\partial y}\int _{x-y}^{\frac{t}{c^1_{2,-}}}e^{-\frac{(t-c^1_{2,-}(x-y))^2}{4c^2_{2,-}u}}\frac{\frac{(t-c^1_{2,-}(x-y))^2}{2c^2_{2,-}}-u}{2u^{\frac{5}{2}}}du\right| \nonumber \\&\quad \lesssim \left| e^{-\frac{(t-c^1_{2,-}(x-y))^2}{4c^2_{2,-}(x-y)}}\frac{\frac{(t-c^1_{2,-}(x-y))^2}{2c^2_{2,-}}-(x-y)}{2(x-y)^{\frac{5}{2}}}\right| \nonumber \\&\quad +e^{-\frac{(t-c^1_{2,-}(x-y))^2}{4c^2_{2,-}\frac{2t}{c^1_{2,-}}}}(t-c^1_{2,-}(x-y))^3\left| \int _{x-y}^{\frac{t}{c^1_{2,-}}}u^{-\frac{7}{2}}du\right| \nonumber \\&\quad +e^{-\frac{(t-c^1_{2,-}(x-y))^2}{4c^2_{2,-}\frac{2t}{c^1_{2,-}}}}(t-c^1_{2,-}(x-y))\left| \int _{x-y}^{\frac{t}{c^1_{2,-}}}u^{-\frac{5}{2}}du\right| \nonumber \\&\quad \lesssim e^{-\frac{c^1_{2,-}(t-c^1_{2,-}(x-y))^2}{16c^2_{2,-}t}}\frac{1}{t^{1.5}}. \end{aligned}$$
(B.3)

\(I^1_{S2Rii}:\) Using that \(e^{-\frac{(t-c^1_{2,-}(x-y))^2}{4c^2_{2,-}(x-y)}}<1\) and that for the complementary error function \(erfc(x):=\frac{2}{\sqrt{\pi }}\int _x^{\infty }e^{-z^2}\mathrm{d}z\), there is the estimate \(erfc(x)\le {e^{-x^2}}\), \(I^1_{S2Rii}\) can be bounded by

$$\begin{aligned}&|I^1_{S2Rii}|\lesssim \int _r^\infty e^{-c^2_{2,-}(x-y)\xi ^2}\mathrm{d}\xi =\frac{1}{\sqrt{(x-y)c^2_{2,-}}}erfc(\sqrt{c^2_{2,-}(x-y)}r)\nonumber \\&\quad \lesssim e^{-r^2c^2_{2,-}(x-y)}\le e^{-r^2c^2_{2,-}\frac{t}{2}}, \end{aligned}$$
(B.4)

in which we have used that \(x-y\) is comparable to t hence is bounded away from 0 and is greater than \(\frac{t}{2}\). Term \(I_{S2Rii}\) is then time-exponentially small.

\(\frac{\partial I^1_{S2Rii}}{\partial y}:\) When the partial derivative hits the exponential outside the integral we get time- exponentially small terms by following the proof for \(I^1_{S2Rii}:\). When the partial derivative hits inside the integral we use \(x^2e^{-x^2}\lesssim e^{-x^2/2}\) and again get time-exponentially small terms by following the proof for \(I^1_{S2Rii}.\)

\(I^1_{R2i}:\) Using that \(xe^{-x^2}\lesssim e^{\frac{-x^2}{2}}\) and that \(\frac{t}{c^1_{2,-}}\) and \(x-y\) are comparable (\(\frac{t}{2c^1_{2,-}}<x-y<\frac{2t}{c^1_{2,-}}\)), we have

$$\begin{aligned}&e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}\int _{-r}^r e^{-\xi ^2c^2_{2,-}(x-y)}O|\eta _*|\mathrm{d}\xi \nonumber \\&\quad \lesssim e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}\int _{-r}^r e^{-\xi ^2c^2_{2,-}(x-y)}\frac{|t-c^1_{2,-}(x-y)|}{x-y}\mathrm{d}\xi \nonumber \\&\quad \lesssim \frac{|t-c^1_{2,-}(x-y)|}{(x-y)^{\frac{3}{2}}}e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}\lesssim \frac{1}{(x-y)}e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{8c^2_{2,-}\left( x-y\right) }}\nonumber \\&\quad \le \frac{1}{\frac{t}{2c^1_{2,-}}}e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{8c^2_{2,-}\frac{2t}{c^1_{2,-}}}}, \end{aligned}$$
(B.5)
$$\begin{aligned}&e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}\int _{-r}^r e^{-\xi ^2c^2_{2,-}(x-y)}O|\xi |\mathrm{d}\xi \nonumber \\&\quad \lesssim e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}\int _{0}^r e^{-\xi ^2c^2_{2,-}(x-y)}\xi \mathrm{d}\xi \nonumber \\&\quad \lesssim \frac{1}{x-y}e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}(1-e^{-r^2c^2_{2,-}(x-y)})\le \frac{1}{\frac{t}{2c^1_{2,-}}}e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{8c^2_{2,-}\frac{2t}{c^1_{2,-}}}}, \end{aligned}$$
(B.6)
$$\begin{aligned}&e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}\int _{-r}^r e^{-\xi ^2c^2_{2,-}(x-y)}O|\eta _*^3(x-y)|\mathrm{d}\xi \nonumber \\&\quad \lesssim e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}\int _{-r}^r e^{-\xi ^2c^2_{2,-}(x-y)}\frac{|t-c^1_{2,-}(x-y)|^3}{(x-y)^2}\mathrm{d}\xi \nonumber \\&\quad \lesssim \frac{|t-c^1_{2,-}(x-y)|^3}{(x-y)^{\frac{5}{2}}}e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}\nonumber \\&\quad \lesssim \frac{1}{(x-y)}e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{8c^2_{2,-}\left( x-y\right) }}\lesssim \frac{1}{t}e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{8c^2_{2,-}\frac{2t}{c^1_{2,-}}}}, \end{aligned}$$
(B.7)
$$\begin{aligned}&e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}\int _{-r}^r e^{-\xi ^2c^2_{2,-}(x-y)}O|\eta _*^2\xi (x-y)|\mathrm{d}\xi \nonumber \\&\quad \lesssim e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}\frac{|t-c^1_{2,-}(x-y)|^2}{x-y}\int _{0}^r e^{-\xi ^2c^2_{2,-}(x-y)}\xi \mathrm{d}\xi \nonumber \\&\quad \lesssim \frac{|t-c^1_{2,-}(x-y)|^2}{(x-y)^2}e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}(1-e^{-r^2c^2_{2,-}(x-y)})\nonumber \\&\quad \lesssim \frac{1}{t}e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{8c^2_{2,-}\frac{2t}{c^1_{2,-}}}}, \end{aligned}$$
(B.8)
$$\begin{aligned}&e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}\int _{-r}^r e^{-\xi ^2c^2_{2,-}(x-y)}O|\eta _*\xi ^2(x-y)|\mathrm{d}\xi \nonumber \\&\quad \lesssim |t-c^1_{2,-}(x-y)|e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}\int _0^r e^{-\xi ^2c^2_{2,-}(x-y)}\xi ^2\mathrm{d}\xi \nonumber \\&\quad \lesssim \frac{|t-c^1_{2,-}(x-y)|}{(x-y)^{\frac{3}{2}}}e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}\nonumber \\&\quad \lesssim \frac{1}{(x-y)}e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{8c^2_{2,-}\left( x-y\right) }}\nonumber \\&\quad \lesssim \frac{1}{t}e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{8c^2_{2,-}\frac{2t}{c^1_{2,-}}}}, \end{aligned}$$
(B.9)
$$\begin{aligned}&e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}\int _{-r}^r e^{-\xi ^2c^2_{2,-}(x-y)}O|\xi ^3(x-y)|\mathrm{d}\xi \nonumber \\&\quad \lesssim (x-y)e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}\int _{0}^r e^{-\xi ^2c^2_{2,-}(x-y)}\xi ^3 \mathrm{d}\xi \nonumber \\&\quad \lesssim \frac{1}{x-y}e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{4c^2_{2,-}\left( x-y\right) }}\nonumber \\&\quad \lesssim \frac{1}{t}e^{-\frac{\left( t-c^1_{2,-}(x-y)\right) ^2}{8c^2_{2,-}\frac{2t}{c^1_{2,-}}}}. \end{aligned}$$
(B.10)

We then see that all terms are absorbable in R (7.6).

Appendix C. Computational Framework

1.1 C.1. Computational Environment

In carrying out our numerical investigations, we have used MacBook Pro 2017 with 16GB memory and Intel Core i7 processor with 2.8GHz processing speed for coding and debugging. The main parallelized computation is done in the compute nodes of IU Karst, a high-throughput computing cluster. It has 228 compute nodes. Each node is an IBM NeXtScale nx360 M4 server equipped with two Intel Xeon E5-2650 v2 8-core processors and with 32 GB of RAM and 250 GB of local disk storage.

1.2 C.2. Computational Time

The computational times displayed in the tables below are times elapsed in a single processor of IU Karst.

Table 1 Times to compute a single Evans–Lopatinsky determinant \(\Delta _{F,H_R}(\lambda )\)
Table 2 Times to compute a single Evans determinant \(D_{F,H_R}(\lambda )\)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zumbrun, K. Stability of Hydraulic Shock Profiles. Arch Rational Mech Anal 235, 195–285 (2020). https://doi.org/10.1007/s00205-019-01422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01422-4

Navigation