Skip to main content
Log in

Existence, Uniqueness and Structure of Second Order Absolute Minimisers

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Let \({\Omega \subseteq \mathbb{R}^n}\) be a bounded open C1,1 set. In this paper we prove the existence of a unique second order absolute minimiser \({u_\infty}\) of the functional

$$\mathrm{E}_\infty (u,\mathcal{O})\, :=\, \|\mathrm{F}(\cdot, \Delta u) \|_{L^\infty( \mathcal{O} )},\,\, \mathcal{O} \subseteq \Omega\,\, \text{measurable},$$

with prescribed boundary conditions for u and \({\mathrm{D}u}\) on \({\partial \Omega}\) and under natural assumptions on F. We also show that \({u_\infty}\) is partially smooth and there exists a harmonic function \({f_\infty \in L^1(\Omega)}\) such that

$${\rm F}(x, \Delta u_\infty(x)) \, =\, e_\infty\,\mathrm{sgn}\big(f_\infty(x)\big)$$

for all \({x \in \{f_\infty \neq 0\}}\) , where \({e_\infty}\) is the infimum of the global energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, S.N., Crandall, M.G., Julin, V., Smart, C.K.: Convexity Criteria and Uniqueness of Absolutely Minimising Functions. Arch. Ration. Mech. Anal. 200, 405–443 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Armstrong, S.N., Smart, C.K.: An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions. Calc. Var. Partial Differ. Equ. 37, 381–384 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aronsson, G.: Minimization problems for the functional \(sup_x \mathcal{F}(x, f(x), f^{\prime }(x))\). Arkiv für Mat. 6, 33–53 (1965)

    Article  ADS  MATH  Google Scholar 

  4. Aronsson, G.: Minimization problems for the functional \(sup_x \mathcal{F}(x, f(x), f^{\prime }(x))\) II. Arkiv für Mat. 6, 409–431 (1966)

    Article  ADS  MATH  Google Scholar 

  5. Aronsson, G.: Extension of functions satisfying Lipschitz conditions. Arkiv für Mat. 6, 551–561 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Aronsson, G.: On Certain minimax problems and Pontryagin's maximum principle. Calc. Var. PDE 37, 99–109 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aronsson, G., Barron, E.N.: \(L^\infty \) variational problems with running costs and constraints. Appl. Math. Optim. 65, 53–90 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aronsson, G., Crandall, M., Juutinen, P.: A tour of the theory of absolutely minimizing functions. Bull. AMS New Ser. 41, 439–505 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barron, E.N., Jensen, R., Wang, C.: The Euler equation and absolute minimisers of \(L^\infty \) functionals. Arch. Ration. Mech. Anal. 157, 255–283 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barron, N., Jensen, R., Wang, C.: Lower Semicontinuity of \(L^\infty \) functionals. Ann. I. H. Poincaré 18, 495–517 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bhattacharya, T., DiBenedetto, E., Manfredi, J.: Limits as \(p \rightarrow \infty \) of \(\Delta_p u_p=f\) and Related Extremal Problems, Rend. Sem. Mat. Univ. Poi. Torino Fascicolo Speciale, Nonlinear PDE's, 1989

  12. Crandall, M.G.: A visit with the \(\infty \)-Laplacian. In: Calculus of Variations and Non-Linear Partial Differential Equations, Springer Lecture notes in Mathematics 1927, CIME, Cetraro Italy, 2005

  13. Crandall, M.G.: Viscosity solutions: a primer. Viscosity Solutions and Applications, Springer Lecture notes in Mathematics 1660, 1–43 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Crandall, M.G., Evans, L.C., Gariepy, R.: Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. 13, 123–139 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Crandall, M.G., Ishii, H., Lions, P.-L.: User's guide to viscosity solutions of second order partial differential equations. Bull. AMS 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Crandall, M.G., Wang, C., Yu, Y.: Derivation of the Aronsson Equation for \(C^1\) Hamiltonians, Transactions of the AMS, Volume 361, Number 1, 103–124, January 2009

  17. Dacorogna, B.: Direct Methods in the Calculus of Variations, Vol. 78, \(2\)nd Edn. Applied Mathematical Sciences, Springer, 2008

  18. Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations. Regional Conference Series in Mathematics 74, AMS, 1990

  19. Evans, L.C.: Partial Differential Equations. AMS, Graduate Studies in Mathematics Vol. 19, 1998

  20. Evans, L.C., Savin, O.: \(C^{1,\alpha }\) Regularity for Infinity Harmonic Functions in Two Dimensions. Calc. Var. 32, 325–347 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Evans, L.C., Smart, C.K.: Everywhere differentiability of Infinity Harmonic Functions. Calc. Var. Partial Differ. Equ. 42, 289–299 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Feldman, M.: Variational evolution problems and nonlocal geometric motion. Arch. Ration. Mech. Anal. 146, 221–274 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: \(L^p\) spaces. Springer Monographs in Mathematics, 2007

  24. Foote, R.L.: Regularity of the distance function. Proc. AMS, 92(1), 153–155, 1984

  25. Giaquinta, M., Martinazzi, L.: An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs. Publications of the Scuola Normale Superiore 11, Springer, 2012

  26. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, reprint of the 1998 edition, Springer

  27. Hardt, R., Simon, L.: Nodal sets for solutions of elliptic equations. J. Differ. Geom. 30, 505–522 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jensen, R.: Uniqueness of Lipschitz extensions minimizing the sup-norm of the gradient. Arch. Ration. Mech. Anal. 123, 51–74 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Katzourakis, N.: An Introduction to Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in \(L^\infty \). Springer Briefs in Mathematics (2015). https://doi.org/10.1007/978-3-319-12829-0

    Article  MathSciNet  MATH  Google Scholar 

  30. Katzourakis, N.: Absolutely minimising generalised solutions to the equations of vectorial calculus of variations in \(L^\infty \). Cal. Var. PDE 56(1), 1–25 (2017). https://doi.org/10.1007/s00526-016-1099-z

    Article  MathSciNet  MATH  Google Scholar 

  31. Katzourakis, N., Pryer, T.: On the numerical approximation of \(\infty \)-Harmonic mappings. Nonlinear Differ. Equ. Appl. 23(6), 1–23 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Katzourakis, N., Pryer, T.: \(2\)nd order \(L^\infty \) variational problems and the \(\infty \)-polylaplacian. Adv. Cal. Var., (2016). Published Online: 27-01-2018, https://doi.org/10.1515/acv-2016-0052 (in press)

  33. Katzourakis, N., Pryer, T.: On the Numerical Approximation of \(\infty \)-Biharmonic and \(p\)-Biharmonic Functions. Numerical Methods for PDE (in press)

  34. Katzourakis, N., Parini, E.: The eigenvalue problem for the \(\infty \)-bilaplacian. Nonlinear Differ. Equ. Appl. NoDEA 24, 68 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equaitons. Springer, 1971

  36. Moser, R., Schwetlick, H.: Minimizers of a weighted maximum of the Gauss curvature. Ann. Glob. Anal. Geom. 41(2), 199–207 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sakellaris, Z.: Minimization of scalar curvature in conformal geometry. Ann. Glob. Anal. Geom., (in press)

  38. Savin, O.: \(C^1\) Regularity for infinity harmonic functions in two dimensions. Arch. Ration. Mech. Anal. 176, 351–361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, C., Yu, Y.: \(C^1\) Regularity of the Aronsson equation in \(\mathbb{R}^2\). Ann. Inst. H. Poincaré, AN, 25, 659–678 2008

  40. Yu, Y.: \(L^{\infty }\) variational problems and Aronsson equations. Arch. Ration. Mech. Anal. 182, 153–180 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

N.K.would like to thank Craig Evans, Robert Jensen, Jan Kristensen, Juan Manfredi, Giles Shaw and Tristan Pryer for inspiring scientific discussions on the topic of L variational problems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Moser.

Additional information

Communicated by C. De Lellis

N.K. has been partially financially supported by the EPSRC Grant EP/N017412/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katzourakis, N., Moser, R. Existence, Uniqueness and Structure of Second Order Absolute Minimisers. Arch Rational Mech Anal 231, 1615–1634 (2019). https://doi.org/10.1007/s00205-018-1305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1305-6

Navigation