Skip to main content
Log in

Minimizers of a weighted maximum of the Gauss curvature

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

On a Riemann surface \({\overline{\Sigma}}\) with smooth boundary, we consider Riemannian metrics conformal to a given background metric. Let κ be a smooth, positive function on \({\overline{\Sigma}}\). If K denotes the Gauss curvature, then the L -norm of K/κ gives rise to a functional on the space of all admissible metrics. We study minimizers subject to an area constraint. Under suitable conditions, we construct a minimizer with the property that |K|/κ is constant. The sign of K can change, but this happens only on the nodal set of the solution of a linear partial differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin T.: Some Nonlinear Problems in Riemannian Geometry. Springer Monographs in Mathematics. Springer-Verlag, Berlin (1998)

    Google Scholar 

  2. Brezis H., Merle F.: Uniform estimates and blow-up behavior for solutions of −Δu = V(x)e u in two dimensions. Commun. Partial Differ. Equ. 16, 1223–1253 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen X.X.: Extremal Hermitian metrics on Riemannian surfaces. Int. Math. Res. Notices. 15, 781–797 (1998)

    Article  Google Scholar 

  4. Chen X.X.: Weak limits of Riemannian metrics in surfaces with integral curvature bound. Calc. Var. Partial Differ. Equ. 6, 189–226 (1998)

    Article  Google Scholar 

  5. Chen X.X.: Extremal Hermitian metrics on Riemann surfaces. Calc. Var. Partial Differ. Equ. 8, 191–232 (1999)

    Article  MATH  Google Scholar 

  6. Chen X.X.: Calabi flow in Riemann surfaces revisited: a new point of view. Int. Math. Res. Notices. 2001, 275–297 (2001)

    Article  MATH  Google Scholar 

  7. Hardt R., Simon L.: Nodal sets for solutions of elliptic equations. J. Differ. Geom. 30, 505–522 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Kazdan J.L., Warner F.W.: Curvature functions for compact 2-manifolds. Ann. Math. 99(2), 14–47 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ma L.: Nirenberg’s Problem in 90’s. Geometry and Topology of Submanifolds, X (Beijing/Berlin, 1999), pp. 171–177. World Scientific, River Edge (2000)

    Book  Google Scholar 

  10. Struwe M.: Curvature flows on surfaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1(5), 247–274 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Topping P.: Mean curvature flow and geometric inequalities. J. Reine Angew. Math. 503, 47–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Topping P.: The isoperimetric inequality on a surface. Manuscr Math 100, 23–33 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Moser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, R., Schwetlick, H. Minimizers of a weighted maximum of the Gauss curvature. Ann Glob Anal Geom 41, 199–207 (2012). https://doi.org/10.1007/s10455-011-9278-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-011-9278-9

Keywords

Navigation