Skip to main content
Log in

Nonlinear Modulational Instability of Dispersive PDE Models

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove nonlinear modulational instability for both periodic and localized perturbations of periodic traveling waves for several dispersive PDEs, including the KDV type equations (for example the Whitham equation, the generalized KDV equation, the Benjamin–Ono equation), the nonlinear Schrödinger equation and the BBM equation. First, the semigroup estimates required for the nonlinear proof are obtained by using the Hamiltonian structures of the linearized PDEs. Second, for the KDV type equations the loss of derivative in the nonlinear terms is overcome in two complementary cases: (1) for smooth nonlinear terms and general dispersive operators, we construct higher order approximation solutions and then use energy type estimates; (2) for nonlinear terms of low regularity, with some additional assumptions on the dispersive operator, we use a bootstrap argument to overcome the loss of a derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angulo Pava J., Bona J.L., Scialom M.: Stability of cnoidal waves. Adv.Differ. Equ. 11(12), 1321–1374 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Angulo Pava J.: Nonlinear Dispersive Equations Existence and Stability of Solitary and Periodic Travelling Wave Solutions. Mathematical Surveys and Monographs, vol. 156. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  3. Bardos C., Guo Y., Strauss W.: Stable and unstable ideal plane flows. Dedicated to the memory of Jacques-Louis Lions. Chin. Ann. Math. Ser. B 23(2), 149–164 (2002)

    Article  MATH  Google Scholar 

  4. Benjamin T.B., Feir J.E.: The disintegration of wave trains on deep water Part 1. Theory. J. Fluid Mech. 27(3), 417–437 (1967)

    Article  ADS  MATH  Google Scholar 

  5. Bottman N., Deconinck B.: KdV cnoidal waves are spectrally stable. Discrete Contin. Dyn. Syst. 25(4), 1163–1180 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bronski, J.C., Hur, V.M., Johnson, M.A.: Modulational instability in equations of KdV type. New approaches to nonlinear waves, pp. 83–133. Lecture Notes in Physics, vol. 908. Springer, Cham, 2016.

  7. Bronski J.C., Hur V.M.: Modulational instability and variational structure. Stud. Appl. Math. 132(4), 285–331 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bronski J.C., Johnson M.A.: The modulational instability for a generalized Korteweg–de Vries equation. Arch. Ration. Mech. Anal. 197(2), 357–400 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deconinck B., Trichtchenko O.: High-frequency instabilities of small-amplitude solutions of Hamiltonian PDEs. Discrete Contin. Dyn. Syst. A, 37(3), 1323–1358 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deconinck B., Segal B.L.: The stability spectrumfor elliptic solutions to the focusing NLS equation. Phys. D 346, 1–19 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ehrnström M., Groves M.D., Wahlén E.: On the existence and stability of solitary wave solutions to a class of evolution equations of Whitham type. Nonlinearity 25(10), 2903–2936 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Gallay T., Haraguş M.: Stability of small periodic waves for the nonlinear Schrödinger equation. J. Differ. Equ. 234(2), 544–581 (2007)

    Article  ADS  MATH  Google Scholar 

  13. Grenier E.: On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 53(9), 1067–1091 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grillakis M., Shatah J., Strauss W.: Stability theory of solitary waves in the presence of symmetry. II. J. Funct.Anal. 94(2), 308–348 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo Y., Strauss W.A.: Instability of periodic BGK equilibria. Commun. Pure Appl. Math. 48(8), 861–894 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Haraguş M., Kapitula T.: On the spectra of periodic waves for infinite-dimensional Hamiltonian systems. Phys. D 237(20), 2649–2671 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. : Stability of periodic waves for the generalized BBM equation. Rev. Roum. Math. Pures Appl. 53(5-6), 445–463 (2008)

    MathSciNet  Google Scholar 

  18. Hur, Vera Mikyoung., Johnson, Mathew A., (2015) Modulational instability in the Whitham equation for water waves. Stud. Appl. Math. 134(1), 120–143, 2015

  19. Hur V.M., Johnson M.A.: Stability of periodic traveling waves for nonlinear dispersive equations. SIAM J. Math. Anal. 47(5), 3528–3554 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hur V.M., Pandey A.K.: Modulational instability in nonlinear nonlocal equations of regularized long wave type. Phys. D 325, 98–112 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hur, V.M., Pandey, A.K.: Modulational Instability in a Full-Dispersion Shallow Water Model. arXiv:1608.04685

  22. Johnson M.A.: Stability of small periodic waves in fractional KdV-type equations. SIAM J. Math. Anal., 45(5), 3168–3193 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Johnson M.A.: Nonlinear stability of periodic traveling wave solutions of the generalized Korteweg–de Vries equation. SIAM J. Math. Anal. 41(5), 1921–1947 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. Spectral theory and differential equations, pp. 25–70. Lecture Notes in Mathematics, vol. 448. Springer, Berlin, 1975

  25. Kato T.: Perturbation Theory for Linear Operators Reprint of the 1980 edition. Classics in Mathematics.. Springer, Berlin (1995)

    Google Scholar 

  26. Kato, T.: Linear and quasi-linear equations of evolution of hyperbolic type. Hyperbolicity, pp. 125–191. C.I.M.E. Summer Sch., vol. 72. Springer, Heidelberg, 2011

  27. Lighthill M.J.: Contributions to the theory of waves in non-linear dispersive systems. IMA J. Appl. Math. 1, 269–306 (1965)

    Google Scholar 

  28. Lin, Z., Zeng, C.: Instability, Index Theorem, and Exponential Trichotomy for Linear Hamiltonian PDEs. arXiv:1703.04016

  29. Lin Zhiwu.: Nonlinear instability of ideal plane flows. Int. Math. Res. Not. 41, 2147–2178 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lin Z., Strauss W.: Nonlinear stability and instability of relativistic Vlasov–Maxwell systems. Commun. Pure Appl. Math. 60(6), 789–837 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pazy, A.: Semigroups on Linear Operators and Applications to Partial Differential Equations. Springer, 1983

  32. Whitham G.B.: Non-linear dispersion of water waves, J. Fluid Mech. 27, 399–412 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Zakharov V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9(2), 190–194 (1968)

    Article  ADS  Google Scholar 

  34. Zakharov V.E., Ostrovsky L.A.: Modulation instability: the beginning. Phys. D 238(5), 540–548 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Zhiwu Lin is supported in part by NSF Grants DMS-1411803 and DMS-1715201. Shasha Liao is partially supported by the China Scholarship Council No. 20150620040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwu Lin.

Ethics declarations

Conflict of interest

There are no conflicts of interest for the research in this paper.

Additional information

Communicated by F. Lin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Liao, S. & Lin, Z. Nonlinear Modulational Instability of Dispersive PDE Models. Arch Rational Mech Anal 231, 1487–1530 (2019). https://doi.org/10.1007/s00205-018-1303-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1303-8

Navigation