Skip to main content
Log in

The Modulational Instability for a Generalized Korteweg–de Vries Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the spectral stability of a family of periodic standing wave solutions to the generalized Korteweg–de Vries in a neighborhood of the origin in the spectral plane using what amounts to a rigorous Whitham modulation theory calculation. In particular we are interested in understanding the role played by the null directions of the linearized operator in the stability of the traveling wave to perturbations of long wavelength. A study of the normal form of the characteristic polynomial of the monodromy map (the periodic Evans function) in a neighborhood of the origin in the spectral plane leads to two different instability indices. The first, an orientation index, counts modulo 2 the total number of periodic eigenvalues on the real axis. This index is a generalization of the one which governs the stability of the solitary wave. The second, a modulational instability index, provides a necessary and sufficient condition for the existence of a long-wavelength instability. This index is essentially the quantity calculated by Hǎrǎguş and Kapitula in the small amplitude limit. Both of these quantities can be expressed in terms of the map between the constants of integration for the ordinary differential equation defining the traveling waves and the conserved quantities of the partial differential equation. These two indices together provide a good deal of information about the spectrum of the linearized operator. We sketch the connection of this calculation to a study of the linearized operator—in particular we perform a perturbation calculation in terms of the Floquet parameter. This suggests a geometric interpretation attached to the vanishing of the orientation index previously mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander J., Jones C.K.R.T.: Existence and stability of asymptotically oscillatory triple pulses. Z. Angew. Math. 44, 189–200 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alexander J., Jones C.K.R.T.: Existence and stability of asymptotically oscillatory double pulses. J. Reine Angew. Math. 446, 49–79 (1994)

    MATH  MathSciNet  Google Scholar 

  3. Angulo Pava J.: Nonlinear stability of periodic traveling wave solutions to the Schrödinger and the modified Korteweg-de Vries equations. J. Differ. Equ. 235(1), 1–30 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Angulo Pava J., Bona J.L., Scialom M.: Stability of cnoidal waves. Adv. Differ. Eq. 11(12), 1321–1374 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Baumgärtel, H.: Analytic Perturbation Theory for Matrices and Operators, volume 15 of Operator Theory: Advances and Applications. Birkhäuser, 1985

  6. Belokolos E.D., Bobenko A.I., Enol’skii V.Z., Its A.R., Matveev V.B.: Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer-Verlag, Berlin (1994)

    MATH  Google Scholar 

  7. Benjamin T.B.: The stability of solitary waves. Proc. Roy. Soc. Lond. Ser. A 328, 153–183 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  8. Bona J.: On the stability theory of solitary waves. Proc. Roy. Soc. Lond. Ser. A 344(1638), 363–374 (1975)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Bona J.L., Souganidis P.E., Strauss W.A.: Stability and instability of solitary waves of Korteweg-de Vries type. Proc. Roy. Soc. Lond. Ser. A 411(1841), 395–412 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Bottman, N., Deconinck, B.: KdV cnoidal waves are linearly stable. Discrete Contin. Dyn. Syst. A (to appear)

  11. Bridges T.J.: Multi-symplectic structures and wave propagation. Math. Proc. Cambr. Philos. Soc. 121(1), 147–190 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bridges T.J., Mielke A.: A proof of the Benjamin-Feir instbility. Arch. Rational Mech. Anal. 133(2), 145–198 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Bridges T.J., Rowlands G.: Instability of spatially quasi-periodic states of the Ginzburg-Landau equation. Proc. Roy. Soc. Lond. Ser. A 444(1921), 347–362 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Deconinck B., Kiyak F., Carter J.D., Kutz J.N.: SpectrUW: a laboratory for the numerical exploration of spectra of linear operators. Math. Comput. Simul. 74(4–5), 370–378 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Flaschka H., Forest M.G., McLaughlin D.W.: Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equation. Comm. Pure Appl. Math. 33(6), 739–784 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Gallay T., Hǎrǎguş M.: Orbital stability of periodic waves for the nonlinear Schrödinger equation. J. Dyn. Differ. Equ. 19(4), 825–865 (2007)

    Article  MATH  Google Scholar 

  17. Gallay T., Hǎrǎguş M.: Stability of small periodic waves for the nonlinear Schrödinger equation. J. Differ. Equ. 234(2), 544–581 (2007)

    Article  MATH  Google Scholar 

  18. Gardner R., Zumbrun K.: The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51, 797–855 (1998)

    Article  MathSciNet  Google Scholar 

  19. Gardner R.A.: Spectral analysis of long wavelength periodic waves and applications. J. Reine Angew. Math. 491, 149–181 (1997)

    MATH  MathSciNet  Google Scholar 

  20. Grillakis M.: Analysis of the linearization around a critical point of an in finite-dimensional Hamiltonian system. Comm. Pure Appl. Math. 43(3), 299–333 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. I,II. J. Funct. Anal. 74(1), 160–197, 308–348 (1987)

    Google Scholar 

  22. Gunning, R.: Lectures on Complex Analytic Varieties: Finite Analytic Mapping (Mathematical Notes). Princeton University Press, 1974

  23. Hǎrǎguş M., Kapitula T.: On the spectra of periodic waves for infinite-dimensional Hamiltonian sytems. Physica D {\bf 237cedil;(20), 2649–2671 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  24. Hilton, H.: Plane Algebraic Curves. The Clarendon Press, 1920

  25. Ivey T., Lafortune S.: Spectral stability analysis for periodic traveling wave solutions of nls and cgl perturbations. Physica D 13, 1750–1772 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  26. Kalita B.C., Das R.: Modified Korteweg-de Vries (mKdV) and Korteweg-de Vries (KdV) solitons in a warm plasma with negative ions and electrons’ drift motion. J. Phys. Soc. Jpn. 71(12), 2918–2924 (2002)

    Article  MATH  ADS  Google Scholar 

  27. Kapitula T.: Stability criterion for bright solitary waves of the perturbed cubic-quintic schrödinger equation. Physica D 116(1–2), 95–120 (1997)

    MathSciNet  ADS  Google Scholar 

  28. Kapitula T., Kutz N., Sandstede B.: The Evans function for nonlocal equations. Indiana Univ. Math. J. 53(4), 1095–1126 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kato T.: Perturbation Theory for Linear Operators. Die Grundlehren der mathematischen Wissenschaften, Band 132. Springer-Verlag New York, Inc., New York (1966)

    Google Scholar 

  30. Korteweg D.J., de Vries G.: On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves. Philos Mag. 36, 422–443 (1895)

    Google Scholar 

  31. Lax P.D., Levermore C.D.: The small dispersion limit of the Korteweg-de Vries equation. II. Comm. Pure Appl. Math. 36(5), 571–593 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lax P.D., Levermore C.D.: The small dispersion limit of the Korteweg-de Vries equation. III. Comm. Pure Appl. Math. 36(6), 809–829 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lax P.D., Levermore C.D.: The small dispersion limit of the Korteweg-de Vries equation. I. Comm. Pure Appl. Math. 36(3), 253–290 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  34. Magnus, W., Winkler, S.: Hill’s Equation. Dover Publications Inc., New York, 1979. Corrected reprint of the 1966 edition

  35. Mamun A.A.: Nonlinear propagation of ion-acoustic waves in a hot magnetized plasma with vortexlike electron distribution. Phys. Plasmas 5(1), 322–324 (1998)

    Article  ADS  Google Scholar 

  36. Michallet H., Barthelemy E.: Experimental study of large interfacial solitary waves. J. Fluid Mech. 366, 159–177 (1998)

    Article  MATH  ADS  Google Scholar 

  37. Moro J., Burke J.V., Overton M.L.: On the Lidskii-Vishik-Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure. SIAM J. Matrix Anal. Appl. 18(4), 793–817 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  38. Mushtaq A., Shah H.A.: Study of non-Maxwellian trapped electrons by using generalized (r,q) distribution function and their effects on the dynamics of ion acoustic solitary wave. Phys. Plasmas 13, 012303 (2006)

    Article  ADS  Google Scholar 

  39. Oh M., Zumbrun K.: Stability of periodic solutions of conservation laws with viscosity: analysis of the Evans function. Arch. Rational Mech. Anal. 166(2), 99–166 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Oh M., Zumbrun K.: Stability of periodic solutions of conservation laws with viscosity: pointwise bounds on the green’s function. Arch. Rational Mech. Anal. 166(2), 167–196 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Oh M., Zumbrun K.: Low-frequency stability analysis of periodic traveling-wave solutions of viscous conservation laws in several dimensions. Z. Anal. Anwend. 25(1), 1–21 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  42. Osborne A.R., Burch T.L.: Internal solitons in the Andaman sea. Science 208(4443), 451–460 (1980)

    Article  ADS  Google Scholar 

  43. Pego R.L., Weinstein M.I.: Asymptotic stability of solitary waves. Comm. Math. Phys. 164(2), 305–349 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Pego R.L., Weinstein M.I.: Eigenvalues, and instabilities of solitary waves. Philos. Trans. Roy. Soc. Lond. Ser. A 340(1656), 47–94 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Rowlands G.: On the stability of solutions of the non-linear schrödinger equation. J. Inst. Maths Appl. 13, 367–377 (1974)

    MATH  Google Scholar 

  46. Schaaf R.: A class of Hamiltonian systems with increasing periods. J. Reine Angew. Math. 363, 96–109 (1985)

    MATH  MathSciNet  Google Scholar 

  47. Segur H., Hammack J.: Soliton models of long internal waves. J. Fluid Mech. 118, 285–304 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. Serre D.: Spectral stability of periodic solutions of viscous conservation laws: Large wavelength analysis. Comm. Partial Differ. Equ. 30(1–2), 259–282 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  49. Weinstein M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  50. Weinstein M.I.: Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation. Comm. Partial Differ. Equ. 12(10), 1133–1173 (1987)

    Article  MATH  Google Scholar 

  51. Whitham G.B.: Non-linear dispersive waves. Proc. Roy. Soc. Ser. A 283, 238–261 (1965)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. Whitham, G.B.: Linear and Nonlinear Waves. Pure and Applied Mathematics (New York). John Wiley & Sons Inc., New York, 1999. Reprint of the 1974 original, A Wiley-Interscience Publication

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared C. Bronski.

Additional information

Communicated by T.-P. Liu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronski, J.C., Johnson, M.A. The Modulational Instability for a Generalized Korteweg–de Vries Equation. Arch Rational Mech Anal 197, 357–400 (2010). https://doi.org/10.1007/s00205-009-0270-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-009-0270-5

Keywords

Navigation