Skip to main content

Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier–Stokes System with Vacuum and Large Oscillations

Abstract

For the three-dimensional full compressible Navier–Stokes system describing the motion of a viscous, compressible, heat-conductive, and Newtonian polytropic fluid, we establish the global existence and uniqueness of classical solutions with smooth initial data which are of small energy but possibly large oscillations where the initial density is allowed to vanish. Moreover, for the initial data, which may be discontinuous and contain vacuum states, we also obtain the global existence of weak solutions. These results generalize previous ones on classical and weak solutions for initial density being strictly away from a vacuum, and are the first for global classical and weak solutions which may have large oscillations and can contain vacuum states.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. North-Holland Publishing Co., Amsterdam, 1990

  2. 2.

    Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Bresch D., Desjardins B.: On the existence of global weak solutions to the Navier–Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl. (9) 87, 57–90 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Cho Y., Kim H.: Existence results for viscous polytropic fluids with vacuum. J. Differ. Equ. 228, 377–411 (2006)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Feireisl E.: Dynamics of Viscous Compressible Fluids. Oxford Science Publication, Oxford (2004)

    MATH  Google Scholar 

  6. 6.

    Feireisl E.: On the motion of a viscous, compressible, and heat conducting fluid. Indiana Univ. Math. J. 53, 1707–1740 (2004)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Feireisl E., Novotny A., Petzeltová H.: On the existence of globally defined weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 3, 358–392 (2001)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Hoff D.: Discontinuous solutions of the Navier–Stokes equations formultidimensional flows of heat-conducting fluids. Arch. Rational Mech. Anal. 139, 303–354 (1997)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Huang X.D., Li J., Xin Z.P.: Serrin type criterion for the three-dimensional compressible flows. SIAM J. Math. Anal. 43(4), 1872–1886 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Huang X.D., Li J., Xin Z.P.: Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier–Stokes equations. Commun. Pure Appl. Math. 65(4), 549–585 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Kazhikhov A.V.: Cauchy problem for viscous gas equations. Sib. Math. J. 23, 44–49 (1982)

    Article  MATH  Google Scholar 

  12. 12.

    Kazhikhov A.V., Shelukhin V.V.: Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech. 41, 273–282 (1977)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Lions, P.L.: Mathematical Topics in Fluid Mechanics, Incompressible Models, Vol. 1. Oxford University Press, New York, 1996

  14. 14.

    Lions, P.L.: Mathematical Topics in Fluid Mechanics. Compressible Models, Vol. 2. Oxford University Press, New York, 1998

  15. 15.

    Matsumura A., Nishida T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Nash J.: Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Soc. Math. France. 90, 487–497 (1962)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Nirenberg L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa (3) 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Rozanova O.: Blow up of smooth solutions to the compressible Navier–Stokes equations with the data highly decreasing at infinity. J. Differ. Equ. 245, 1762–1774 (2008)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Serrin J.: On the uniqueness of compressible fluid motion. Arch. Ration. Mech. Anal. 3, 271–288 (1959)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Xin Z.P.: Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Commun. Pure Appl. Math. 51, 229–240 (1998)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Additional information

X.-D. Huang is partially supported by the National Center for Mathematics and Interdisciplinary Sciences, CAS, and by President Fund of Academy of Mathematics Systems Science, CAS, No. 2014-cjrwlzx-hxd and NNSFC Grant Nos. 11471321, 11371064, 11671412, and 11688101; J. Li is partially supported by the National Center for Mathematics and Interdisciplinary Sciences, CAS, and NNSFC Grant Nos. 11371348, 11688101, and 11525106.

Communicated by P.-L. Lions

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Li, J. Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier–Stokes System with Vacuum and Large Oscillations. Arch Rational Mech Anal 227, 995–1059 (2018). https://doi.org/10.1007/s00205-017-1188-y

Download citation