Skip to main content
Log in

Global Strong Solution to the Two-Dimensional Full Compressible Navier–Stokes Equations with Large Viscosity

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we consider the initial-boundary value problem for the full compressible Navier–Stokes equations on the square domain. We show the global existence of the strong solution with vacuum if the coefficient of viscosity \(\mu \) is suitably large. Moreover, an exponential decay rate of the strong solution is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  Google Scholar 

  2. Brézis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Partial Differ. Equ. 5(7), 773–789 (1980)

    Article  MathSciNet  Google Scholar 

  3. Brézis, H.R., Gallouet, T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. 4(4), 677–681 (1980)

    Article  MathSciNet  Google Scholar 

  4. Cho, Y., Choe, H.J., Kim, H.: Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83(2), 243–275 (2004)

    Article  MathSciNet  Google Scholar 

  5. Cho, Y., Kim, H.: Existence results for viscous polytropic fluids with vacuum. J. Differ. Equ. 228(2), 377–411 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  6. Choe, H.J., Kim, H.: Strong solutions of the Navier–Stokes equations for isentropic compressible fluids. J. Differ. Equ. 190(2), 504–523 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  7. Deng, X., Zhang, P., Zhao, J.: Global classical solution to the three-dimensional isentropic compressible Navier–Stokes equations with general initial data. Sci. China Math. 55(12), 2457–2468 (2012)

    Article  MathSciNet  Google Scholar 

  8. Ding, S., Huang, B., Liu, X.: Global classical solutions to the 2D compressible Navier–Stokes equations with vacuum. J. Math. Phys. 59(8), 081507 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  9. Engler, H.: An alternative proof of the Brezis–Wainger inequality. Commun. Partial Differ. Equ. 14(4), 541–544 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Fan, J., Jiang, S., Yaobin, O.: A blow-up criterion for compressible viscous heat-conductive flows. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(1), 337–350 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  11. Fang, D., Zi, R., Zhang, T.: A blow-up criterion for two dimensional compressible viscous heat-conductive flows. Nonlinear Anal. 75(6), 3130–3141 (2012)

    Article  MathSciNet  Google Scholar 

  12. Fang, L., Guo, Z.: Global well-posedness of strong solutions to the two-dimensional barotropic compressible Navier–Stokes equations with vacuum. Z. Angew. Math. Phys. 67(2), 22, 27 (2016)

  13. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and its Applications, vol. 26. Oxford University Press, Oxford (2004)

    Google Scholar 

  14. Hoff, D.: Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 120(1), 215–254 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  15. Hoff, D.: Strong convergence to global solutions for multi-dimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch. Ration. Mech. Anal. 132(1), 1–14 (1995)

    Article  MathSciNet  Google Scholar 

  16. Huang, X., Li, J.: Existence and blowup behavior of global strong solutions to the two-dimensional barotrpic compressible Navier–Stokes system with vacuum and large initial data. J. Math. Pures Appl. 106(1), 123–154 (2016)

    Article  MathSciNet  Google Scholar 

  17. Huang, X., Li, J.: Global classical and weak solutions to the three-dimensional full compressible Navier–Stokes system with vacuum and large oscillations. Arch. Ration. Mech. Anal. 227(3), 995–1059 (2018)

    Article  MathSciNet  Google Scholar 

  18. Huang, X., Li, J., Wang, Y.: Serrin-type blowup criterion for full compressible Navier–Stokes system. Arch. Ration. Mech. Anal. 207(1), 303–316 (2013)

    Article  MathSciNet  Google Scholar 

  19. Huang, X., Li, J., Xin, Z.: Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier–Stokes equations. Commun. Pure Appl. Math. 65(4), 549–585 (2012)

    Article  MathSciNet  Google Scholar 

  20. Itaya, N.: On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluid. Kodai Math. Sem. Rep. 23, 60–120 (1971)

    Article  MathSciNet  Google Scholar 

  21. Jiu, Q., Wang, Y., Xin, Z.: Global well-posedness of the Cauchy problem of two-dimensional compressible Navier–Stokes equations in weighted spaces. J. Differ. Equ. 255(3), 351–404 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  22. Jiu, Q., Wang, Y., Xin, Z.: Global well-posedness of 2D compressible Navier–Stokes equations with large data and vacuum. J. Math. Fluid Mech. 16(3), 483–521 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  23. Jiu, Q., Wang, Y., Xin, Z.: Global classical solution to two-dimensional compressible Navier–Stokes equations with large data in \({\mathbb{R}}^2\). Phys. D 376(377), 180–194 (2018)

    Article  MathSciNet  Google Scholar 

  24. Li, J., Xin, Z.: Global existence of weak solutions to the barotropic compressible Navier–Stokes flows with degenerate viscosities (2015). arXiv:1504.06826

  25. Li, J., Xin, Z.: Global well-posedness and large time asymptotic behavior of classical solutions to the compressible Navier–Stokes equations with vacuum. Ann. PDE 5(1), 7, 37 (2019)

  26. Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Vol. 2, Volume 10 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York (1998). Compressible models, Oxford Science Publications

  27. Luo, Z.: Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum. Commun. Math. Sci. 10(2), 527–554 (2012)

    Article  MathSciNet  Google Scholar 

  28. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20(1), 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  29. Matsumura, A., Nishida, T.: Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Commun. Math. Phys. 89(4), 445–464 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  30. Nash, J.: Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Soc. Math. France 90, 487–497 (1962)

  31. Serrin, J.: On the uniqueness of compressible fluid motions. Arch. Ration. Mech. Anal. 3(271–288), 1959 (1959)

    MathSciNet  MATH  Google Scholar 

  32. Si, X., Zhang, J., Zhao, J.: Global classical solutions of compressible isentropic Navier–Stokes equations with small density. Nonlinear Anal. Real World Appl. 42, 53–70 (2018)

    Article  MathSciNet  Google Scholar 

  33. Sun, Y., Wang, C., Zhang, Z.: A Beale–Kato–Majda blow-up criterion for the 3-D compressible Navier–Stokes equations. J. Math. Pures Appl. 95(1), 36–47 (2011)

    Article  MathSciNet  Google Scholar 

  34. Sun, Y., Wang, C., Zhang, Z.: A Beale–Kato–Majda criterion for three dimensional compressible viscous heat-conductive flows. Arch. Ration. Mech. Anal. 201(2), 727–742 (2011)

    Article  MathSciNet  Google Scholar 

  35. Tani, A.: On the first initial-boundary value problem of compressible viscous fluid motion. Publ. Res. Inst. Math. Sci. 13(1), 193–253 (1977)

    Article  Google Scholar 

  36. Vasseur, A.F., Cheng, Yu.: Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations. Invent. Math. 206(3), 935–974 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  37. Vaĭgant, V.A., Kazhikhov, A.V.: On the existence of global solutions of two-dimensional Navier–Stokes equations of a compressible viscous fluid. Sibirsk. Mat. Zh. 36(6), 1283–1316, ii (1995)

    MathSciNet  Google Scholar 

  38. Wang, Y., Zhang, Q.: Blowup analysis for two-dimensional viscous compressible, heat-conductive Navier–Stokes equations. Appl. Math. Comput. 232, 719–726 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Wang, Y.: One new blowup criterion for the 2D full compressible Navier–Stokes system. Nonlinear Anal. Real World Appl. 16, 214–226 (2014)

    Article  MathSciNet  Google Scholar 

  40. Wen, H., Zhu, C.: Blow-up criterions of strong solutions to 3D compressible Navier–Stokes equations with vacuum. Adv. Math. 248, 534–572 (2013)

    Article  MathSciNet  Google Scholar 

  41. Wen, H., Zhu, C.: Global solutions to the three-dimensional full compressible Navier–Stokes equations with vacuum at infinity in some classes of large data. SIAM J. Math. Anal. 49(1), 162–221 (2017)

    Article  MathSciNet  Google Scholar 

  42. Xu, H., Zhang, J.: Regularity and uniqueness for the compressible full Navier–Stokes equations. J. Differ. Equ. 272, 46–73 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  43. Yu, H., Zhang, P.: Global strong solutions to the 3D full compressible Navier–Stokes equations with density-temperature-dependent viscosities in bounded domains. J. Differ. Equ. 268(12), 7286–7310 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  44. Yu, H., Zhao, J.: Global classical solutions to the 3D isentropic compressible Navier–Stokes equations in a bounded domain. Nonlinearity 30(1), 361–381 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  45. Zlotnik, A.A.: Uniform estimates and the stabilization of symmetric solutions of a system of quasilinear equations. Differ. Uravn. 36(5):634–646, 718 (2000)

Download references

Acknowledgements

This work is supported partially by Chinese National Natural Science Foundation under Grant 11831011 and by China Postdoctoral Science Foundation under Grant 2021M692089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyang Shang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by T. Nishida.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Shang, Z. Global Strong Solution to the Two-Dimensional Full Compressible Navier–Stokes Equations with Large Viscosity. J. Math. Fluid Mech. 24, 7 (2022). https://doi.org/10.1007/s00021-021-00641-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00641-8

Keywords

Mathematics Subject Classification

Navigation