Skip to main content
Log in

Stability of Contact Lines in Fluids: 2D Stokes Flow

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In an effort to study the stability of contact lines in fluids, we consider the dynamics of an incompressible viscous Stokes fluid evolving in a two-dimensional open-top vessel under the influence of gravity. This is a free boundary problem: the interface between the fluid in the vessel and the air above (modeled by a trivial fluid) is free to move and experiences capillary forces. The three-phase interface where the fluid, air, and solid vessel wall meet is known as a contact point, and the angle formed between the free interface and the vessel is called the contact angle. We consider a model of this problem that allows for fully dynamic contact points and angles. We develop a scheme of a priori estimates for the model, which then allow us to show that for initial data sufficiently close to equilibrium, the model admits global solutions that decay to equilibrium exponentially quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces. 2nd edn. Pure and Applied Mathematics (Amsterdam), vol. 140. Elsevier/Academic Press, Amsterdam, 2003

  2. Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertozzi A.: The mathematics of moving contact lines in thin liquid films. Not. Am. Math. Soc. 45(6), 689–697 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Blake, D.: Dynamic contact angles and wetting kinetics. In: Berg, J.C. (ed.) Wettability. Marcel Dekker, New York, 1993

  5. Blake D., Haynes J.M.: Kinetics of liquid/liquid displacement. J. Colloid Interface Sci. 30, 421–423 (1969)

    Article  ADS  Google Scholar 

  6. Bodea, S.: The motion of a fluid in an open channel. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5(1), 77–105, 2006

  7. Cox R.: The dynamics of the spreading of liquids on a solid surface: part 1 Viscous flow. J. Fluid Mech. 168, 169–220 (1986)

    Article  ADS  MATH  Google Scholar 

  8. De Gennes, P.: Wetting: statics and dynamics. Rev. Mod. Phys. 57(3), 827–863, 1985

  9. de Laplace, M.: Celestial Mechanics. Vols. I–IV. Translated from the French, with a commentary, by Nathaniel Bowditch Chelsea Publishing Co., Inc., Bronx, N.Y., 1966

  10. Dussan E.: On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech. 11, 371–400 (1979)

    Article  ADS  Google Scholar 

  11. Èskin, G.: General boundary-value problems for equations of principal type in a planar domain with angle points. Uspekhi Mat. Nauk 18(3), 241–242, 1963

  12. Finn, R.: Equilibrium Capillary Surfaces. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 284. Springer, New York, 1986

  13. Guo Y., Tice I.: Almost exponential decay of periodic viscous surface waves without surface tension. Arch. Ration. Mech. Anal. 207(2), 459–531 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo Y., Tice I.: Decay of viscous surface waves without surface tension in horizontally infinite domains. Anal. PDE 6(6), 1429–1533 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo Y., Tice I.: Local well-posedness of the viscous surface wave problem without surface tension. Anal. PDE 6(2), 287–369 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston, MA, 1985

  17. Grisvard, P.: Singularities in Boundary Value Problems. Recherches en Mathmatiques Appliques [Research in Applied Mathematics], vol. 22. Masson, Paris; Springer, Berlin, 1992

  18. Gauss, C.: Principia generalia theoriae figurae fluidorum in statu equilibrii. Gött. Gelehrte Anz., Werke 5, 29–77, 1829

  19. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1988

  20. Jang J., Tice I., Wang, Y.J.: The compressible viscous surface–internal wave problem: stability and vanishing surface tension limit. To appear in Commun. Math. Phys. 2016

  21. Jin B.: Free boundary problem of steady incompressible flow with contact angle \({\pi/2}\). J. Differ. Equ. 217(1), 1–25 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  22. Kondrat’ev V.: Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obšc̆. 16, 209–292 (1967)

    MathSciNet  Google Scholar 

  23. Kozlov, V.A., Mazya, V.G., Rossmann, J.: Elliptic Boundary Value Problems in Domains with Point Singularities. Mathematical Surveys and Monographs, vol. 52. American Mathematical Society, Providence, RI, 1997

  24. Kozlov, V., Mazya, V., Rossmann, J.: Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations. Mathematical Surveys and Monographs, vol. 85. American Mathematical Society, Providence, RI, 2001

  25. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications. Vol. I. Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer, New York, 1972

  26. Lopatinskiĭ J.: On a certain type of singular integral equation. Teoret. Prikl. Mat. Vip. 2, 53–57 (1963)

    MathSciNet  Google Scholar 

  27. Maz’ya, V.G., Rossmann, J.: Elliptic Equations in Polyhedral Domains. Mathematical Surveys and Monographs, vol. 162. American Mathematical Society, Providence, RI, 2010

  28. Orlt, M., Sändig, A.-M.: Regularity of viscous Navier–Stokes flows in nonsmooth domains. Boundary Value Problems and Integral Equations in Nonsmooth Domains (Luminy, 1993), 185–201. Lecture Notes in Pure and Appl. Math., vol. 167, Dekker, New York, 1995

  29. Ren,W., E,W.: Boundary conditions for the moving contact line problem. Phys. Fluids 19(2), 022101-1–022101-15, 2007

  30. Ren, W., E, W.: Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Commun. Math. Sci. 9(2), 597–606, 2011

  31. Schweizer B.: A well-posed model for dynamic contact angles. Nonlinear Anal. 43(1), 109–125 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Socolowsky J.: The solvability of a free boundary problem for the stationary Navier–Stokes equations with a dynamic contact line. Nonlinear Anal. 21(10), 763–784 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Solonnikov V.: On some free boundary problems for the Navier–Stokes equations with moving contact points and lines. Math. Ann. 302(4), 743–772 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. 2nd edn. Johann Ambrosius Barth, Heidelberg, 1995

  35. Young T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. London 95, 65–87 (1805)

    Article  Google Scholar 

  36. Zheng Y., Tice I.: Local well-posedness of the contact line problem in 2D Stokes flow. SIAM J. Math. Anal. 49(2), 899–953 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Tice.

Additional information

Communicated by A. Bressan

Y. Guo was supported in part by NSFC Grant 10828103 and NSF Grant DMS-Grant 1209437.

I. Tice was supported by a Simons Foundation Grant (#401468) and an NSF CAREER Grant (DMS #1653161).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Tice, I. Stability of Contact Lines in Fluids: 2D Stokes Flow. Arch Rational Mech Anal 227, 767–854 (2018). https://doi.org/10.1007/s00205-017-1174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1174-4

Navigation