Skip to main content
Log in

On the Navier–Stokes system with the Coulomb friction law boundary condition

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We propose a new model for the motion of a viscous incompressible fluid. More precisely, we consider the Navier–Stokes system with a boundary condition governed by the Coulomb friction law. With this boundary condition, the fluid can slip on the boundary if the tangential component of the stress tensor is too large. We prove the existence and uniqueness of weak solution in the two-dimensional problem and the existence of at least one solution in the three-dimensional case, together with regularity properties and an energy estimate. We also propose a fully discrete scheme of our problem using the characteristic method, and we present numerical simulations in two physical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brezis, H.: Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983. Théorie et applications. [Theory and applications]

  2. Conca, C., San Martín, J., Tucsnak, M.: Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Commun. Partial Differ. Equ. 25, 1019–1042 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Duvaut, G., Lions, J.L.: Les inéquations en méchanique et en physique. Dunod, Paris (1972). (in French)

    MATH  Google Scholar 

  4. Gérard-Varet, D., Hillairet, M.: Existence of weak solutions up to collision for viscous fluid-solid systems with slip. Commun. Pure Appl. Math. 67, 2022–2075 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gérard-Varet, D., Hillairet, M., Wang, C.: The influence of boundary conditions on the contact problem in a 3D Navier–Stokes flow. J. Math. Pures Appl. 9(103), 1–38 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Girault, V., Raviart, P.-A.: Finite Element Approximation of the Navier–Stokes Equations. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  7. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer Series in Computational Physics, Springer, New York (1984)

  8. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ladyzhenskaya, O.: The Mathematical Theory of Viscous Incomprehensible Flow. Gordon and Breach Science Publishers, New York (1969)

    MATH  Google Scholar 

  10. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars, Paris (1969)

  11. Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications, vol. I. Springer, New York: Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181 (1972)

  12. Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math. 38, 309–332 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. San Martín, J., Scheid, J.-F., Smaranda, L.: A modified Lagrange–Galerkin method for a fluid-rigid system with discontinuous density. Numer. Math. 122, 341–382 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Martin, J.S., Scheid, J.-F., Takahashi, T., Tucsnak, M.: Convergence of the Lagrange–Galerkin method for the equations modelling the motion of a fluid-rigid system. SIAM J. Numer. Anal. 43, 1536–1571 (2005). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  15. San Martín, J.A., Starovoitov, V., Tucsnak, M.: Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161, 113–147 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Süli, E.: Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations. Numer. Math. 53, 459–483 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Temam, R.: Navier–Stokes equations, North-Holland Publishing Co., Amsterdam, third, (eds.): Theory and numerical analysis. With an appendix by F. Thomasset (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredana Bălilescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bălilescu, L., San Martín, J. & Takahashi, T. On the Navier–Stokes system with the Coulomb friction law boundary condition. Z. Angew. Math. Phys. 68, 3 (2017). https://doi.org/10.1007/s00033-016-0744-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0744-x

Keywords

Mathematics Subject Classification

Navigation