Ambrosio L.: Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111, 291–322 (1990)
MathSciNet
Article
MATH
Google Scholar
Ambrosio L., Coscia A., Dal Maso G.: Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139, 201–238 (1997)
MathSciNet
Article
MATH
Google Scholar
Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford, 2000
Bellettini, G., Coscia, A., Dal Maso, G.: Compactness and lower semicontinuity properties in SBD(Ω). Math. Z. 228 (1998), 337–351
Bourdin B.: Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound. 9, 411–430 (2007)
MathSciNet
Article
MATH
Google Scholar
Bourdin B., Francfort G.A., Marigo J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48, 797–826 (2000)
ADS
MathSciNet
Article
MATH
Google Scholar
Bourdin B., Francfort G.A., Marigo J.J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008)
MathSciNet
Article
MATH
Google Scholar
Braides A., Dal Maso G., Garroni A.: Variational formulation of softening phenomena in fracture mechanics. The one-dimensional case. Arch. Ration. Mech. Anal. 146, 23–58 (1999)
Article
MATH
Google Scholar
Braides A., Gelli M.S.: Limits of discrete systems with long-range interactions. J. Convex Anal. 9, 363–399 (2002)
MathSciNet
MATH
Google Scholar
Braides A., Lew A., Ortiz M.: Effective cohesive behavior of layers of interatomic planes. Arch. Ration. Mech. Anal. 180, 151–182 (2006)
MathSciNet
Article
MATH
Google Scholar
Braides A., Solci M., Vitali E.: A derivation of linear elastic energies from pair-interaction atomistic systems. Netw. Heterog. Media 2, 551–567 (2007)
MathSciNet
Article
MATH
Google Scholar
Burke S., Ortner C., Süli E.: An adaptive finite element approximation of a generalized Ambrosio-Tortorelli functional. Math. Models Methods Appl. Sci. 23, 1663–1697 (2013)
MathSciNet
Article
MATH
Google Scholar
Chambolle A.: A density result in two-dimensional linearized elasticity, and applications. Arch. Ration. Mech. Anal. 167, 167–211 (2003)
MathSciNet
Article
MATH
Google Scholar
Chambolle A.: An approximation result for special functions with bounded deformation. J. Math. Pures Appl. 83, 929–954 (2004)
MathSciNet
Article
MATH
Google Scholar
Chambolle A., Giacomini A.: Ponsiglione M.: Piecewise rigidity. J. Funct. Anal. 244, 134–153 (2007)
MathSciNet
Article
MATH
Google Scholar
Cortesani G., Toader R.: A density result in SBV with respect to non-isotropic energies. Nonlinear Analysis. 38, 585–604 (1999)
MathSciNet
Article
MATH
Google Scholar
Dal Maso, G.: An introduction to \({\Gamma}\)-convergence. Birkhäuser, Boston · Basel · Berlin. 1993
Dal Maso G.: Generalized functions of bounded deformation. J. Eur. Math. Soc. (JEMS). 15, 1943–1997 (2013)
Article
MATH
Google Scholar
Dal Maso G., Francfort G.A., Toader R.: Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176, 165–225 (2005)
MathSciNet
Article
MATH
Google Scholar
Dal Maso, G., Francfort, G.A., Toader, R.: Quasi-static crack evolution in brittle fracture: the case of bounded solutions. Calculus of Variations. Topics from the Mathematical Heritage of Ennio De Giorgi, 247–266, Quaderni di Matematica, Dipartimento di Matematica della Seconda Università di Napoli, Vol. 14, 2004
Dal Maso G., Negri M., Percivale D.: Linearized elasticity as \({\Gamma}\)-limit of finite elasticity. Set-valued Anal. 10, 165–183 (2002)
MathSciNet
Article
MATH
Google Scholar
Dal Maso G., Lazzaroni G.: Quasistatic crack growth in finite elasticity with non- interpenetration. Ann. Inst. H. Poincaré Anal. Non Linéaire. 27, 257–290 (2010)
ADS
MathSciNet
Article
MATH
Google Scholar
De Giorgi E., Ambrosio L.: Un nuovo funzionale del calcolo delle variazioni. Acc. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. 82, 199–210 (1988)
Google Scholar
Doktor P.: Approximation of domains with Lipschitzian boundary. Č;as. Pěst. Mat. 101, 237–255 (1976)
MathSciNet
MATH
Google Scholar
Federer, H.: Geometric measure theory. Springer, New York, 1969
Focardi M., Iurlano F.: Asymptotic analysis of Ambrosio- Tortorelli energies in linearized elasticity. SIAM J. Math. Anal. 46, 2936–2955 (2014)
MathSciNet
Article
MATH
Google Scholar
Francfort G.A., Marigo J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids. 46, 1319–1342 (1998)
ADS
MathSciNet
Article
MATH
Google Scholar
Friedrich, M., Schmidt, B.: A quantitative geometric rigidity result in SBD. Preprint, 2015
Friedrich M., Schmidt B.: An atomistic-to-continuum analysis of crystal cleavage in a two-dimensional model problem. J. Nonlin. Sci. 24, 145–183 (2014)
ADS
MathSciNet
Article
MATH
Google Scholar
Friedrich M., Schmidt B.: An analysis of crystal cleavage in the passage from atomistic models to continuum theory. Arch. Ration. Mech. Anal. 217, 263–308 (2015)
MathSciNet
Article
MATH
Google Scholar
Friedrich M., Schmidt B.: On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. 10 (2015), 321–342
Friesecke G., James R.D., Müller S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55, 1461–1506 (2002)
MathSciNet
Article
MATH
Google Scholar
Griffith A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. London. 221, 163–198 (1921)
ADS
Article
Google Scholar
Iurlano F.: A density result for GSBD and its application to the approximation of brittle fracture energies. Calc. Var. PDE. 51, 315–342 (2014)
MathSciNet
Article
MATH
Google Scholar
Kristensen J.: Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313, 653–710 (1999)
MathSciNet
Article
MATH
Google Scholar
Miller R.E., Tadmor E.: The Quasicontinuum Method: Overview, applications and current directions.. Journal of Computer-Aided Materials Design. 9, 203–239 (2002)
ADS
Article
Google Scholar
Mora-Corral C.: Explicit energy-minimizers of incompressible elastic brittle bars under uniaxial extension. C. R. Acad. Sci. Paris. 348, 1045–1048 (2010)
MathSciNet
Article
MATH
Google Scholar
Negri M.: Finite element approximation of the Griffith’s model in fracture mechanics. Numer. Math. 95, 653–687 (2003)
MathSciNet
Article
MATH
Google Scholar
Negri M.: A non-local approximation of free discontinuity problems in SBV and SBD. Calc. Var. PDE. 25, 33–62 (2005)
MathSciNet
Article
MATH
Google Scholar
Negri M., Toader R.: Scaling in fracture mechanics by Bažant’s law: from finite to linearized elasticity. Math. Models Methods Appl. Sci. 25, 1389–1420 (2015)
MathSciNet
Article
MATH
Google Scholar
Schmidt B.: Linear \({\Gamma}\)-limits of multiwell energies in nonlinear elasticity theory. Continuum Mech. Thermodyn. 20, 375–396 (2008)
ADS
MathSciNet
Article
MATH
Google Scholar
Schmidt B.: On the derivation of linear elasticity from atomistic models. Netw. Heterog. Media. 4, 789–812 (2009)
MathSciNet
Article
MATH
Google Scholar
Schmidt B., Fraternali F., Ortiz M.: Eigenfracture: an eigendeformation approach to variational fracture. SIAM Multiscale Model. Simul. 7, 1237–1266 (2009)
MathSciNet
Article
MATH
Google Scholar
Tadmor E., Ortiz M., Phillips R.: Quasicontinuum analysis of defects in solids. Phil. Mag. A 73, 1529–1563 (1996)
ADS
Article
Google Scholar
Zhang K.: An approximation theorem for sequences of linear strains and its applications. ESAIM Control Optim. Calc. Var. 10, 224–242 (2004)
MathSciNet
Article
MATH
Google Scholar