Skip to main content
  • 828 Accesses

Abstract

The aim of the present article is a description of the many phenomenological aspects of fracture and of their relations with other inelastic phenomena, such as the formation of microstructure and the changes in the material’s strength induced by plasticity and damage.

The whole analysis is carried on using a single mathematical tool, the incremental energy minimization. The energy functional is assumed to be made of two parts, an elastic energy and a cohesive energy. The structure assumed for the cohesive energy term determines different modes of inelastic response and fracture. To avoid the heavy technical difficulties met in higher dimension, the whole analysis is one-dimensional.

This article reflects the contents of six lectures delivered in a couple of occasions. The object of the first lecture is Griffith’s theory of brittle fracture. In the second lecture, the Barenblatt–Dugdale regularization is discussed. In Lecture 3 it is shown that the concept of cohesive energy can be successfully used to describe the formation of microstructure. A description of the phenomenon of elastic unloading, based on the assumption of dissipativity of the cohesive energy, is given in Lecture 4. The last two lectures deal with the diffuse cohesive energy model. In it, the cohesive energy, instead of being defined on surfaces as usual, is supposed to be diffused over the volume. In particular, the non-local model discussed in Lecture 6 provides a comprehensive description of the strain-softening phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeyaratne, R., Chu, C., James, R.D.: Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy. Philos. Mag. A 73, 457–497 (1996)

    Article  Google Scholar 

  2. Aifantis, E.C.: Maxwell and Van der Waals revisited. In: Tsakalakos, T. (ed.) Proc. MRS Meeting “Phase Transformations in Solids”, pp. 37–49. North-Holland, Amsterdam (1984)

    Google Scholar 

  3. Aifantis, E.C.: The physics of plastic deformation. Int. J. Plast. 3, 211–247 (1987)

    Article  MATH  Google Scholar 

  4. Ambrosi, D., Guillou, A.: Growth and dissipation in biological tissues. Contin. Mech. Thermodyn. 19, 245–251 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  6. Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43, 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Amor, H., Marigo, J.J., Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57, 1209–1229 (2009)

    Article  MATH  Google Scholar 

  8. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of the energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barenblatt, G.I.: The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J. Appl. Math. Mech. 23, 622–636 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barenblatt, G.I.: Scaling. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  11. Bažant, Z.P.: Instability, ductility, and size effect in strain-softening concrete. J. Eng. Mech. Div. 102, 331–344 (1976)

    Google Scholar 

  12. Bažant, Z.P.: Mechanics of distributed cracking. Appl. Mech. Rev. 39, 675–705 (1986)

    Article  Google Scholar 

  13. Bažant, Z.P., Cedolin, L.: Stability of Structures. Oxford University Press, New York (1991)

    MATH  Google Scholar 

  14. Bažant, Z.P., Chen, E.P.: Scaling of structural failure. Appl. Mech. Rev. 50, 593–627 (1997)

    Article  Google Scholar 

  15. Bažant, Z.P., Jirásek, M.: Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128, 1119–1149 (2002)

    Article  Google Scholar 

  16. Bažant, Z.P., Planas, J.: Fracture and Size Effect in Concrete and Other Quasibrittle Materials. CRC Press, Boca Raton (1998)

    Google Scholar 

  17. Benallal, A., Marigo, J.-J.: Bifurcation and stability issues in gradient theories with softening. Model. Simul. Mater. Sci. Eng. 15, S283–S295 (2007)

    Article  Google Scholar 

  18. Borodich, F. (ed.): Proc. IUTAM Symposium on Scaling in Solid Mechanics, Cardiff, 2007. IUTAM Bookseries, vol. 10. Springer, Berlin (2009)

    Google Scholar 

  19. Boscovich, R.G.: Theoria Philosophiæ Naturalis Redacta ad Unicam Legem Virium in Natura Existentium. Vienna (1758), Venice (1763), Paris (1765)

    Google Scholar 

  20. Bouchitté, B., Braides, A., Buttazzo, G.: Relaxation results for some free discontinuity problems. J. Reine Angew. Math. 458, 1–18 (1995)

    MathSciNet  MATH  Google Scholar 

  21. Bouchitté, B., Buttazzo, G.: Relaxation for a class of nonconvex functionals defined on measures. Ann. Inst. Henri Poincaré 10, 345–361 (1993)

    MATH  Google Scholar 

  22. Bourdin, B.: Numerical implementation of the variational formulation of brittle fracture. Interfaces Free Bound. 9, 411–430 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bourdin, B., Francfort, G., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48, 797–826 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bourdin, B., Francfort, G., Marigo, J.J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bourdin, B., Larsen, C., Richardson, C.L.: A time-discrete model for dynamic fracture based on crack regularization. Int. J. Fract. 168, 133–143 (2011)

    Article  Google Scholar 

  26. Braides, A.: Γ-Convergence for Beginners. Oxford University Press, Oxford (2002)

    Book  MATH  Google Scholar 

  27. Braides, A., Coscia, A.: A singular perturbation approach to variational problems in fracture mechanics. Math. Models Methods Appl. Sci. 3, 303–340 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Braides, A., Dal Maso, G., Garroni, A.: Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch. Ration. Mech. Anal. 146, 23–58 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cahn, J.W., Hilliard, J.E.: Free energy of a uniform system. I. Interfacial energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  30. Capriz, G.: Continua with Microstructure. Springer Tracts in Natural Philosophy, vol. 35. Springer, New York (1989)

    Book  MATH  Google Scholar 

  31. Carpinteri, A.: Interpretation of the Griffith instability as a bifurcation of the global equilibrium. In: Shah, S.P. (ed.) Proc. NATO Adv. Res. Workshop Application of Fracture Mechanics to Cementitious Composites, Evanston, USA, pp. 287–316. Nijhoff, Dordrecht (1985)

    Chapter  Google Scholar 

  32. Carpinteri, A.: Cusp catastrophe interpretation of fracture instability. J. Mech. Phys. Solids 37, 567–582 (1989)

    Article  MATH  Google Scholar 

  33. Carpinteri, A.: Size effects on strength, toughness, and ductility. J. Eng. Mech. 115, 1375–1392 (1989)

    Article  Google Scholar 

  34. Carpinteri, A.: Fractal nature of material microstructure and size effects on apparent mechanical properties. Mech. Mater. 18, 89–101 (1994)

    Article  Google Scholar 

  35. Carpinteri, A., Chiaia, B., Cornetti, P.: On the mechanics of quasi-brittle materials with a fractal microstructure. Eng. Fract. Mech. 70, 2321–2349 (2003)

    Article  Google Scholar 

  36. Carpinteri, A., Cornetti, P., Puzzi, S.: Scaling laws and multiscale approach in the mechanics of heterogeneous and disordered materials. Appl. Mech. Rev. 59, 283–305 (2006)

    Article  Google Scholar 

  37. Casal, P.: La théorie du second gradient et la capillarité. C. R. Math. Acad. Sci. 274, A1571–A1574 (1972)

    MathSciNet  Google Scholar 

  38. Castellier, E., Gélébart, L., Lacour, C., Lantuéjoul, C.: Three consistent approaches of the multiple cracking process in 1D composites. Compos. Sci. Technol. 70, 2146–2153 (2010)

    Article  Google Scholar 

  39. Cattaneo, S., Rosati, G., Banthia, N.: A simple model to explain the effect of different boundary conditions in direct tensile tests. Constr. Build. Mater. 23, 129–137 (2009)

    Article  Google Scholar 

  40. Chambolle, A., Giacomini, A., Ponsiglione, M.: Crack initiation in brittle materials. Arch. Ration. Mech. Anal. 188, 309–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Charlotte, M., Laverne, J., Marigo, J.J.: Initiation of cracks with cohesive force models: a variational approach. Eur. J. Mech. A, Solids 25, 649–669 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Choksi, R., Del Piero, G., Fonseca, I., Owen, D.R.: Structured deformations as energy minimizers in models of fracture and hysteresis. Math. Mech. Solids 4, 321–356 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Comi, C., Mariani, S., Negri, M., Perego, U.: A one-dimensional variational formulation for quasibrittle fracture. J. Mech. Mater. Struct. 1, 1323–1343 (2006)

    Article  Google Scholar 

  44. Coulomb, C.A.: Essai sur une application des règles de Maximis & Minimis à quelques problèmes de statique, relatifs à l’architecture. In: Mémoires de Mathématique & de Physique, présentés à l’Académie Royale des Sciences par divers Savans, vol. 7, pp. 343–382 (1773). Paris 1776

    Google Scholar 

  45. Dal Maso, G.: Variational problems in fracture mechanics. In: New Developments in the Calculus of Variations, Benevento, March 2005, pp. 57–67 (2006)

    Google Scholar 

  46. Dal Maso, G., De Simone, A., Mora, M.G., Morini, M.: Time dependent systems of generalized Young measures. Netw. Heterog. Media 2, 1–36 (2007)

    MathSciNet  MATH  Google Scholar 

  47. Dal Maso, G., Toader, R.: A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162, 101–135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. de Borst, R., Pamin, J., Peerlings, R.H.J., Sluys, L.J.: On gradient-enhanced damage and plasticity models for failure in quasi-brittle and frictional materials. Comput. Mech. 17, 130–141 (1995)

    Article  MATH  Google Scholar 

  49. de Borst, R., Pamin, J.: Gradient plasticity in numerical simulation of concrete cracking. Eur. J. Mech. A, Solids 15, 295–320 (1996)

    MATH  Google Scholar 

  50. De Giorgi, E., Ambrosio, L.: Un nuovo tipo di funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei 82, 199–210 (1988)

    MATH  Google Scholar 

  51. Del Piero, G.: One-dimensional ductile-brittle transition, yielding, and structured deformations. In: Argoul, P., et al. (eds.) Proc. IUTAM Symp. Variation of Domains and Free-Boundary Problems in Solid Mechanics, pp. 203–210. Kluwer, Dordrecht (1997)

    Google Scholar 

  52. Del Piero, G.: Towards a unified approach to fracture, yielding, and damage. In: Inan, E., Markov, K.Z. (eds.) Proc. 9th Internat. Symposium Continuum Models and Discrete Systems, pp. 679–692. World Scientific, Singapore (1998)

    Google Scholar 

  53. Del Piero, G.: The energy of a one-dimensional structured deformation. Math. Mech. Solids 6, 387–408 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. Del Piero, G.: Bi-modal cohesive energies. In: Dal Maso, G., et al. (eds.) Variational Problems in Materials Science, Progress in Nonlinear Differential Equations and Their Applications, vol. 68, pp. 43–54. Birkhäuser, Basel (2004)

    Google Scholar 

  55. Del Piero, G., Lancioni, G., March, R.: A variational model for fracture mechanics: numerical experiments. J. Mech. Phys. Solids 55, 2513–2537 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Del Piero, G., Lancioni, G., March, R.: A diffuse energy approach for fracture and plasticity: the one-dimensional case. J. Mech. Mater. Struct. (2013, forthcoming)

    Google Scholar 

  57. Del Piero, G., Owen, D.R.: Structured deformations of continua. Arch. Ration. Mech. Anal. 124, 99–155 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  58. Del Piero, G., Owen, D.R.: Integral-gradient formulae for structured deformations. Arch. Ration. Mech. Anal. 131, 121–138 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  59. Del Piero, G., Owen, D.R.: Structured Deformations. XXII Summer School of Mathematical Physics, CNR-GNFM, Ravello (1997). Quaderni dell’Istituto Nazionale di Alta Matematica (2000)

    Google Scholar 

  60. Del Piero, G., Owen, D.R. (eds.): Multiscale Modeling in Continuum Mechanics and Structured Deformations. CISM Courses and Lectures, vol. 447. Springer, Wien (2004)

    Google Scholar 

  61. Del Piero, G., Raous, M.: A unified model for adhesive interfaces with damage, viscosity, and friction. Eur. J. Mech. A, Solids 29, 496–507 (2010)

    Article  MathSciNet  Google Scholar 

  62. Del Piero, G., Truskinovsky, L.: Macro- and micro-cracking in one-dimensional elasticity. Int. J. Solids Struct. 38, 1135–1148 (2001)

    Article  MATH  Google Scholar 

  63. Del Piero, G., Truskinovsky, L.: Elastic bars with cohesive energy. Contin. Mech. Thermodyn. 21, 141–171 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  64. Drucker, D.C.: A more fundamental approach to plastic stress-strain relations. In: Proc. 1st US Nat. Congr. Appl. Mech., pp. 487–491. ASME, New York (1951)

    Google Scholar 

  65. Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)

    Article  Google Scholar 

  66. Dumouchel, P.E., Marigo, J.J., Charlotte, M.: Dynamic fracture: an example of convergence towards a discontinuous quasistatic solution. Contin. Mech. Thermodyn. 20, 1–19 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  67. Ericksen, J.L.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113, 97–120 (1990)

    Article  MathSciNet  Google Scholar 

  68. Fedelich, B., Ehrlacher, A.: Sur un principe de minimum concernant des matériauxà comportement indépendant du temps physique. C. R., Méc. 308, 1391–1394 (1989)

    MathSciNet  MATH  Google Scholar 

  69. Francfort, G., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  70. Frank, F.C.: On the theory of liquid crystals. Discuss. Faraday Soc. 25, 19–28 (1958)

    Article  Google Scholar 

  71. Freddi, F., Royer Carfagni, G.: Regularized variational theories of fracture: a unified approach. J. Mech. Phys. Solids 58, 1154–1174 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  72. Galilei, G.: Discorsi e Dimostrazioni Matematiche Intorno à Due Nuove Scienze. Elsevier, Leyden (1638)

    Google Scholar 

  73. Geers, M.G.D., Engelen, R.A.B., Ubachs, R.J.M.: On the numerical modelling of ductile damage with an implicit gradient-enhanced formulation. Rev. Europ. Élém. Finis 10, 173–191 (2001)

    MATH  Google Scholar 

  74. Giordano, S., Mattoni, A., Colombo, L.: From elasticity theory to atomistic simulations. Rev. Comput. Chem. 27, 1–83 (2011)

    Google Scholar 

  75. Goodier, J.N., Hoff, N.J. (eds.): Proc. 1st Symposium on Naval Structural Mechanics, Standford University, 1958. Pergamon, Elmsford (1960)

    Google Scholar 

  76. Griffith, A.A.: The phenomenon of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 221, 163–198 (1921)

    Article  Google Scholar 

  77. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  78. Hackl, K., Fischer, D.F.: On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc. R. Soc. A, Math. Phys. Eng. Sci. 464, 117–132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  79. Hackl, K., Hoppe, U., Kochmann, D.: Generation and evolution of inelastic microstructures—an overview. GAMM-Mitt. 35, 91–106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  80. Hill, R.: A variational principle of maximum plastic work in classical plasticity. Q. J. Mech. Appl. Math. 1, 18–28 (1948)

    Article  MATH  Google Scholar 

  81. Hillerborg, A.: Application of the fictitious crack model to different types of materials. Int. J. Fract. 51, 95–102 (1991)

    Google Scholar 

  82. Hillerborg, A., Modéer, M., Peterson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 773–782 (1976)

    Article  Google Scholar 

  83. Hordijik, D.A.: Tensile and tensile fatigue behaviour of concrete; experiments, modelling and analyses. Heron 37, 1–79 (1992)

    Google Scholar 

  84. Ippolito, M., Mattoni, A., Colombo, L., Pugno, N.: Role of lattice discreteness in brittle fracture: atomistic simulations versus analytical models. Phys. Rev. B 73, 104111 (2006)

    Article  Google Scholar 

  85. Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  86. Irwin, G.R.: Fracture mechanics. In: Goodier, J.N., Hoff, N.J. (eds.) Proc. 1st Symposium on Naval Structural Mechanics, Stanford University, 1958, pp. 557–594. Pergamon, Elmsford (1960)

    Google Scholar 

  87. James, R.D.: Wiggly energies. In: Batra, R.C., Beatty, M.F. (eds.) Contemporary Research in the Mechanics and Mathematics of Materials, pp. 275–286. CIMNE, Barcelona (1996)

    Google Scholar 

  88. Jaubert, A., Marigo, J.J.: Justification of Paris-type fatigue laws from cohesive forces model via a variational approach. Contin. Mech. Thermodyn. 18, 23–45 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  89. Jirásek, M.: Nonlocal models for damage and fracture: comparison of approaches. Int. J. Solids Struct. 35, 4133–4145 (1998)

    Article  MATH  Google Scholar 

  90. Jirásek, M., Rolshoven, S.: Localization properties of strain-softening gradient plasticity models. Part I: strain-gradient theories. Int. J. Solids Struct. 46, 2225–2238 (2009)

    Article  MATH  Google Scholar 

  91. Jirásek, M., Rolshoven, S.: Localization properties of strain-softening gradient plasticity models. Part II: theories with gradients of internal variables. Int. J. Solids Struct. 46, 2239–2254 (2009)

    Article  MATH  Google Scholar 

  92. Korteweg, D.J.: Sur la forme qui prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires …. Arch. Néerl. Sci. Exactes Nat. 6, 1–24 (1901)

    MATH  Google Scholar 

  93. Lancioni, G., Royer-Carfagni, G.: The variational approach to fracture mechanics. A practical application to the French Panthéon in Paris. J. Elast. 95, 1–30 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  94. Larsen, C.J.: Epsilon-stable quasi-static brittle fracture evolution. Commun. Pure Appl. Math. 63, 630–654 (2010)

    MATH  Google Scholar 

  95. Larsen, C.J., Ortner, C., Süli, E.: Existence of solutions to a regularized model of dynamic fracture. Math. Models Methods Appl. Sci. 20, 1021–1048 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  96. Lasry, D., Belytschko, T.: Localization limiters in transient problems. Int. J. Solids Struct. 24, 581–597 (1988)

    Article  MATH  Google Scholar 

  97. Laverne, J., Marigo, J.J.: Approche globale, minima relatifs et critère d’amorçage en mécanique de la rupture. C. R., Méc. 332, 313–318 (2004)

    Article  MATH  Google Scholar 

  98. Lorentz, E., Andrieux, S.: A variational formulation for nonlocal damage models. Int. J. Plast. 15, 119–138 (1999)

    Article  MATH  Google Scholar 

  99. Lourenço, P.B., Almeida, J.C., Barros, J.A.: Experimental investigations of bricks under uniaxial tensile testing. Mason. Int. 18, 11–20 (2005)

    Google Scholar 

  100. Lu, C.: Some notes on the study of fractals in fracture. In: Proc. 5th Australasian Congress on Applied Mechanics, ACAM 2007, Brisbane, Australia (2007)

    Google Scholar 

  101. Marigo, J.J.: Initiation of cracks in Griffith’s theory: an argument of continuity in favor of global minimization. J. Nonlinear Sci. 20, 831–868 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  102. Marigo, J.J., Truskinovsky, L.: Initiation and propagation of fracture in the models of Griffith and Barenblatt. Contin. Mech. Thermodyn. 16, 391–409 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  103. Maxwell, J.C.: On stresses in rarified gases arising from inequalities of temperature. Philos. Trans. R. Soc. Lond. A 170, 231–256 (1876)

    Google Scholar 

  104. Mielke, A.: Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Contin. Mech. Thermodyn. 15, 351–382 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  105. Mielke, A.: Deriving new evolution equations for microstructures via relaxation of variational incremental problems. Comput. Methods Appl. Mech. Eng. 193, 5095–5127 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  106. Miklowitz, J.: The influence of dimensional factors on the mode of yielding and fracture in medium carbon steel-I. The geometry and size of the flat tensile bar. J. Appl. Mech. 37, 274–287 (1948)

    Google Scholar 

  107. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  108. Nemat-Nasser, S., Sum, Y., Keer, L.M.: Unstable growth of tension cracks in brittle solids: stable and unstable bifurcations, snap-through, and imperfection sensitivity. Int. J. Solids Struct. 16, 1017–1035 (1980)

    Article  MATH  Google Scholar 

  109. Orowan, E.: Energy criteria of fracture. Weld. J. 34, 157–160 (1955)

    Google Scholar 

  110. Nilsson, C.: Nonlocal strain softening bar revisited. Int. J. Solids Struct. 34, 4399–4419 (1997)

    Article  MATH  Google Scholar 

  111. Owen, D.R.: Balance laws and a dissipation inequality for general constituents undergoing disarrangements and mixing. Z. Angew. Math. Mech. 88, 365–377 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  112. Pedregal, P.: Optimization, relaxation and Young measures. Bull. Am. Math. Soc. 36, 27–58 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  113. Pham, K., Marigo, J.J.: Approche variationnelle de l’endommagement: I. Les concepts fondamentaux. C. R., Méc. 338, 191–198 (2010)

    Article  MATH  Google Scholar 

  114. Pham, K., Marigo, J.J.: Approche variationnelle de l’endommagement: II. Les modélesà gradient. C. R., Méc. 338, 199–206 (2010)

    Article  MATH  Google Scholar 

  115. Pham, K., Amor, H., Marigo, J.J., Maurini, C.: Gradient damage models and their use to approximate brittle fracture. Int. J. Damage Mech. 20, 618–652 (2011)

    Article  Google Scholar 

  116. Pham, K., Marigo, J.J.: From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models. Contin. Mech. Thermodyn. 25, 147–171 (2013)

    Article  MathSciNet  Google Scholar 

  117. Pugno, N.M., Ruoff, R.S.: Quantized fracture mechanics. Philos. Mag. 27, 2829–2845 (2004)

    Article  Google Scholar 

  118. Pugno, N.M.: Dynamic quantized fracture mechanics. Int. J. Fract. 140, 159–168 (2006)

    Article  MATH  Google Scholar 

  119. Rice, J.R.: The initiation and growth of shear bands. In: Palmer, A.C. (ed.) Plasticity and Soil Mechanics, pp. 263–274. Cambridge University Press, Cambridge (1973)

    Google Scholar 

  120. Rice, J.R.: The localization of plastic deformation. In: Koiter, W.T. (ed.) Theoretical and Applied Mechanics, vol. 1, pp. 207–220. North-Holland, Amsterdam (1976)

    Google Scholar 

  121. Rogula, D.: Introduction to nonlocal theory of material media. In: Rogula, D. (ed.) Nonlocal Theory of Material Media. CISM Courses and Lectures, vol. 268, pp. 125–222. Springer, Wien (1982)

    Google Scholar 

  122. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  123. Silling, S.A., Weckner, O., Askari, E., Bobaru, F.: Crack nucleation in a peridynamic solid. Int. J. Fract. 162, 219–227 (2010)

    Article  MATH  Google Scholar 

  124. Sluckin, T.J., Dunmur, D.A., Stegemeyer, H.: Crystals That Flow. Classic Papers From the History of Liquid Crystals. Taylor & Francis, London (2004)

    Google Scholar 

  125. Sluys, L.J., de Borst, R.: Failure in plain and reinforced concrete—an analysis of crack width and crack spacing. Int. J. Solids Struct. 33, 3257–3276 (1996)

    Article  MATH  Google Scholar 

  126. Sorelli, L.G., Meda, A., Plizzari, G.A.: Bending and uniaxial tensile tests on concrete reinforced with hybrid steel fibers. J. Mater. Civ. Eng. 17, 519–527 (2005)

    Article  Google Scholar 

  127. Stören, S., Rice, J.R.: Localized necking in thin sheets. J. Mech. Phys. Solids 23, 421–441 (1975)

    Article  MATH  Google Scholar 

  128. Truskinovsky, L.: Fracture as a phase transition. In: Batra, R.C., Beatty, M.F. (eds.) Contemporary Research in the Mechanics and Mathematics of Materials, pp. 322–332. CIMNE, Barcelona (1996)

    Google Scholar 

  129. Truskinovsky, L., Zanzotto, G.: Ericksen’s bar rivisited: energy wiggles. J. Mech. Phys. Solids 44, 1371–1408 (1996)

    Article  MathSciNet  Google Scholar 

  130. Van der Waals, J.D.: Over de Continuiteit van den Gas- en Vloeistoftoestand. Ph.D. Thesis, Sijthoff, Leiden (1873). English translation: On the Continuity of the Gas and Liquid States. London (1890), and North-Holland, Amsterdam (1988)

    Google Scholar 

  131. Van der Waals, J.D.: The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. Verhandel. Konink. Akad. Weten. Amsterdam, Sect. 1, Vol. 1(8) (1893) (in Dutch). English translation by S. Rowlinson: J. Stat. Phys. 20, 197–244 (1979)

    Google Scholar 

  132. Van Mier, J.G.M., Van Vliet, M.R.A.: Influence of microstructure of concrete on size/scale effects in tensile fracture. Eng. Fract. Mech. 70, 2281–2306 (2003)

    Article  Google Scholar 

  133. Virga, E.G.: Variational Theories for Liquid Crystals. Chapman & Hall, London (1994)

    MATH  Google Scholar 

  134. Volokh, K.Y.: Nonlinear elasticity for modeling fracture of isotropic brittle solids. J. Appl. Mech. 71, 141–143 (2004)

    Article  MATH  Google Scholar 

  135. Wnuk, M.P., Yavari, A.: Discrete fractal fracture mechanics. Eng. Fract. Mech. 75, 1127–1142 (2008)

    Article  Google Scholar 

  136. Yarema, S.Y.: On the contribution of G.R. Irwin to fracture mechanics. Mat. Sci. 31, 617–624 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpietro Del Piero .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Del Piero, G. (2013). A Variational Approach to Fracture and Other Inelastic Phenomena. In: A Variational Approach to Fracture and Other Inelastic Phenomena. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7226-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7226-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7225-0

  • Online ISBN: 978-94-007-7226-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics