Archive for Rational Mechanics and Analysis

, Volume 224, Issue 3, pp 817–870 | Cite as

Locality of the Thomas–Fermi–von Weizsäcker Equations

Open Access
Article

Abstract

We establish a pointwise stability estimate for the Thomas–Fermi–von Weiz-säcker (TFW) model, which demonstrates that a local perturbation of a nuclear arrangement results also in a local response in the electron density and electrostatic potential. The proof adapts the arguments for existence and uniqueness of solutions to the TFW equations in the thermodynamic limit by Catto et al. (The mathematical theory of thermodynamic limits: Thomas–Fermi type models. Oxford mathematical monographs. The Clarendon Press, Oxford University Press, New York, 1998). To demonstrate the utility of this combined locality and stability result we derive several consequences, including an exponential convergence rate for the thermodynamic limit, partition of total energy into exponentially localised site energies (and consequently, exponential locality of forces), and generalised and strengthened results on the charge neutrality of local defects.

References

  1. 1.
    Agmon, S.: Lectures on the Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operations (MN-29). Princeton University Press (2014)Google Scholar
  2. 2.
    Ashcroft N., Mermin N.: Solid State Physics. Saunders College, Rochester (1976)MATHGoogle Scholar
  3. 3.
    Aubin T.: Nonlinear Analysis on Manifolds. Monge–Ampere Equations, Vol. 252. Springer, Berlin (1982)CrossRefMATHGoogle Scholar
  4. 4.
    Bader R.: Atoms in Molecules. Wiley Online Library, New York (1990)Google Scholar
  5. 5.
    Benguria R., Brézis H., Lieb E.: The Thomas–Fermi–von Weizsäcker theory of atoms and molecules. Commun. Math. Phys. 79(2), 167–180 (1981)ADSCrossRefMATHGoogle Scholar
  6. 6.
    Benzi M., Boito P., Razouk N.: Decay properties of spectral projectors with applications to electronic structure. SIAM Rev. 55(1), 3–64 (2013)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Blanc X.: Unique solvability of a system of nonlinear elliptic pdes arising in solid state physics. SIAM J. Math. Anal. 38(4), 1235–1248 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Blanc X., Monneau R.: Screening of an applied electric field inside a metallic layer described by the Thomas–Fermi–von Weizsäcker model. Adv. Differ. Equ. 7(7), 847–876 (2002)MATHGoogle Scholar
  9. 9.
    Brezis H., Lieb E.: Long range atomic potentials in Thomas–Fermi theory. Commun. Math. Phys. 65(3), 231–246 (1979)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Cancès E., Ehrlacher V.: Local defects are always neutral in the Thomas–Fermi–von Weiszäcker theory of crystals. Arch. Ration. Mech. Anal. 202(3), 933–973 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Cancès E., Lewin M.: The dielectric permittivity of crystals in the reduced Hartree–Fock approximation. Arch. Ration. Mech. Anal. 197(1), 139–177 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Catto, I., Le Bris, C., Lions, P.-L.: The Mathematical Theory of Thermodynamic Limits: Thomas–Fermi Type Models. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1998.Google Scholar
  13. 13.
    Chen, H., Nazar, F., Ortner, C.: Models for crystalline defects (in preparation) Google Scholar
  14. 14.
    Chen, H., Ortner, C.: QM/MM methods for crystalline defects. Part 1: Locality of the tight binding model. Multiscale Model. Simul. 14(1), 232–264 (2015)Google Scholar
  15. 15.
    Chen, H., Ortner, C.: QM/MM methods for crystalline defects. Part 2: Consistent energy and force-mixing. Multiscale Model. Simul. 15(1), 184–214 (2017)Google Scholar
  16. 16.
    Combes, J.-M., Thomas, L.: Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators. Commun. Math. Phys. 34 (4), 251–270, 1973Google Scholar
  17. 17.
    Csányi G., Albaret T., Moras G., Payne M., De Vita A.: Multiscale hybrid simulation methods for material systems. J. Phys. Condens. Matter 17(27), R691 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Donovan B., March N.: Screening of point singularities in metals, with particular reference to positron annihilation. J. Phys. Chem. Solids 11(1–2), 68–72 (1959)ADSCrossRefGoogle Scholar
  19. 19.
    Ehrlacher, V., Ortner, C., Shapeev, A.: Analysis of boundary conditions for crystal defect atomistic simulations. 2013. arXiv:1306.5334
  20. 20.
    Evans, L.: Partial Differential Equations, volume 19 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence, 2010Google Scholar
  21. 21.
    Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions, Vol. 5. CRC Press, Boca Raton, 1991Google Scholar
  22. 22.
    Gabovich A., Il’Chenkoa L., Pashitskii E., Romanov Y.: Screening of charges and Friedel oscillations of the electron density in metals having differently shaped Fermi surfaces. Sov. J. Exp. Theor. Phys. 48, 124 (1978)ADSGoogle Scholar
  23. 23.
    Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin, 2001 (reprint of the 1998 edition)Google Scholar
  24. 24.
    Goedecker S.: Linear scaling electronic structure methods. Rev. Mod. Phys. 71, 1085–1123 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    Ismail-Beigi, S., Arias, T.: Locality of the density matrix in metals, semiconductors, and insulators. 1999. arXiv:cond-mat.mtrl-sci/9805147v4 1999
  26. 26.
    Jost, J.: Partial Differential Equations, volume 214 of Graduate Texts in Mathematics, 3rd edn. Springer, New York, 2013.Google Scholar
  27. 27.
    Poole Jr, C.: Encyclopedic Dictionary of Condensed Matter Physics, Vol. 1. Academic Press, Cambridge, 2004Google Scholar
  28. 28.
    Kittel C., Fong C.-Y.: Quantum Theory of Solids. Wiley, New York (1963)Google Scholar
  29. 29.
    Ladányi K., Nagy I., Apagyi B.: Partially linearized Thomas–Fermi–Weizsäcker theory for screening and stopping of charged particles in jellium. Phys. Rev. A 45, 2989–2997 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    Lieb E., Simon B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23(1), 22–116 (1977)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Lieb, E.H: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641, 1981Google Scholar
  32. 32.
    March N.: Electron Density Theory of Atoms and Molecules. Academic Press, Cambridge (1992)Google Scholar
  33. 33.
    March N., Young W.H., Sampanthar S.: The Many-Body Problem in Quantum Mechanics. Courier Corporation, Chelmsford (1967)Google Scholar
  34. 34.
    Markowich P., Ringhofer C., Schmeiser C.: Semiconductor Equations. Springer, New York (1990)CrossRefMATHGoogle Scholar
  35. 35.
    Nagy I., Arnau A., Echenique M., Ladányi K.: Stopping power of a finite-temperature electron gas for slow unit charges. Phys. Rev. A 43, 6038–6042 (1991)ADSCrossRefGoogle Scholar
  36. 36.
    Nazar, F.Q.: Convergence rates from Yukawa to Coulomb interaction in the Thomas–Fermi–von Weizsäcker model. 2016. arXiv:1601.01187, 2016
  37. 37.
    Ortner, C., Theil, F.: Justification of the Cauchy–Born approximation of elastodynamics. Arch. Ration. Mech. Anal. 207, 2013Google Scholar
  38. 38.
    Prodan E., Kohn W.: Nearsightedness of electronic matter. Proc. Natl. Acad. Sci. USA 102(33), 11635–11638 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    Resta R.: Thomas–Fermi dielectric screening in semiconductors. Phys. Rev. B 16(6), 2717 (1977)ADSCrossRefGoogle Scholar
  40. 40.
    Scarfone L.: Weizsäcker correction in the Thomas–Fermi and Thomas–Fermi-Dirac models of static dielectric screening in undoped semiconductors: impurity donor ions in silicon and germanium. Phys. Rev. B 45, 8348–8354 (1992)ADSCrossRefGoogle Scholar
  41. 41.
    Solovej J.: Universality in the Thomas–Fermi-von Weizsäcker model of atoms and molecules. Commun. Math. Phys. 129(3), 561–598 (1990)ADSMathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Trudinger N.: Linear elliptic operators with measurable coefficients. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 27(2), 265–308 (1973)MathSciNetMATHGoogle Scholar
  43. 43.
    Wang Z., Zhou H.: Positive solution for a nonlinear stationary Schrödinger–Poisson system in \({\mathbb{R}^{3}}\). Discrete Contin. Dyn. Syst. 18(4), 809 (2007)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Yu M., Trinkle D., Martin R.: Energy density in density functional theory: application to crystalline defects and surfaces. Phys. Rev. B 83(11), 115113 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    Zhao L., Zhao F.: On the existence of solutions for the Schrödinger–Poisson equations. J. Math. Anal. Appl. 346(1), 155–169 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Mathematics InstituteZeeman Building, University of WarwickCoventryUK

Personalised recommendations