Skip to main content
Log in

Emergent Dynamics of a Thermodynamically Consistent Particle Model

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We present a thermodynamically consistent particle (TCP) model motivated by the theory of multi-temperature mixture of fluids in the case of spatially homogeneous processes. The proposed model incorporates the Cucker-Smale (C-S) type flocking model as its isothermal approximation. However, it is more complex than the C-S model, because the mutual interactions are not only “mechanical” but are also affected by the “temperature effect” as individual particles may exhibit distinct internal energies. We develop a framework for asymptotic weak and strong flocking in the context of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhaya D.: Light matters: Phototaxis and signal transduction in unicellular cyanobacteria. Mol. Microbiol. 53, 745754 (2004)

    Article  Google Scholar 

  2. Bose, T.K.: High-Temperature Gas Dynamics. Springer, Berlin, 2003

  3. Burriesci M., Bhaya D.: Tracking phototactic responses and modeling motility of Syne- chocystis sp. Strain PCC6803. J. Photochem. Photobiol. 91, 7786 (2008)

    Article  Google Scholar 

  4. Carrillo J.A., Fornasier M., Rosado J., Toscani G.: Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal. 42, 218–236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cho, J., Ha, S.-Y., Huang, F., Jin, C., Ko, D.: Emergence of bi-cluster flocking for the Cucker-Smale model. Math. Models Methods Appl. Sci. 26, 1191–1218 (2016)

  6. Cucker F., Dong J.-G.: Avoiding collisions in flocks. IEEE Trans. Autom. Control 55, 1238–1243 (2010)

    Article  MathSciNet  Google Scholar 

  7. Cucker F., Smale S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52, 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  8. Degond P., Motsch S.: Large-scale dynamics of the Persistent Turing Walker model of fish behavior. J. Stat. Phys. 131, 989–1022 (2008)

    Article  ADS  MATH  Google Scholar 

  9. Fornasier M., Haskovec J., Toscani G.: Fluid dynamic description of flocking via Povzner-Boltzmann equation. Phys. D 240, 21–31 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ha S.-Y., Levy D.: Particle, kinetic and fluid models for phototaxis. Discrete Contin. Dyn. Syst. B 12, 77–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ha S.-Y., Liu J.-G.: A simple proof of Cucker-Smale flocking dynamics and mean field limit. Commun. Math. Sci. 7, 297–325 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ha S.-Y., Tadmor E.: From particle to kinetic and hydrodynamic description of flocking. Kinet. Relat. Models 1, 415–435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge, 1985

  14. Kuramoto Y.: International symposium on mathematical problems in mathematical physics. Lecture Notes Theor. Phys. 30, 420 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  15. Leonard N.E., Paley D.A., Lekien F., Sepulchre R., Fratantoni D.M., Davis R. E.: Collective motion, sensor networks and ocean sampling. Proc. IEEE 95, 48–74 (2007)

    Article  Google Scholar 

  16. Levy D., Requeijo T.: Modeling group dynamics of phototaxis: From Particle systems to PDEs. Disc. Cont. Dyn. Sys. B 9, 108128 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Levy D., Requeijo T.: Stochastic models for phototaxis. Bull. Math. Biol. 70, 16841706 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li Z., Xue X.: Cucker-Smale flocking under rooted leadership with fixed and switching topologies. SIAM J. Appl. Math. 70, 3156–3174 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Motsch S., Tadmor E.: A new model for self-organized dynamics and its flocking behavior. J. Stat. Phys. 144, 923–947 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn. Springer, New York, 1998

  21. Paley D.A., Leonard N.E., Sepulchre R., Grunbaum D., Parrish J.K.: Oscillator models and collective motion. IEEE Control Syst. 27, 89–105 (2007)

    Article  Google Scholar 

  22. Perea L., Elosegui P., Gómez G.: Extension of the Cucker-Smale control law to space flight formation. J. Guid. Control Dyn. 32, 526–536 (2009)

    Article  ADS  Google Scholar 

  23. Ruggeri T.: Galilean Invariance and Entropy Principle for Systems of Balance Laws The Structure of the Extended Thermodynamics. Contin. Mech. Thermodyn. 1, 3 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Ruggeri T., Simić S.: Average temperature and Maxwellian iteration in multitemperature mixtures of fluids. Phys. Rev. E 80, 026317 (2009)

    Article  ADS  Google Scholar 

  25. Ruggeri T., Simić S.: On the Hyperbolic System of a Mixture of Eulerian Fluids: A Comparison Between Single and Multi-Temperature Models. Math. Methods Appl. Sci. 30, 827–849 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics beyond the Monatomic Gas. Springer, Cham, Heidelberg, New York, Dordrecht, London, 2015

  27. Shen J.: Cucker-Smale flocking under hierarchical leadership. SIAM J. Appl. Math. 68, 694–719 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tao G.: A simple alternative to the Barbalat Lemma. IEEE Trans. Autom. Control 42, 698 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Toner J., Tu Y.: Flocks, herds, and Schools: A quantitative theory of flocking. Phys. Rev. E 58, 4828–4858 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  30. Topaz C.M., Bertozzi A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65, 152–174 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Truesdell, C.: Rational Thermodynamics. McGraw-Hill, New York, 1969

  32. Vicsek T., Czirók A., Ben-Jacob E., Cohen I., Schochet O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  33. Winfree A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Ruggeri.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, SY., Ruggeri, T. Emergent Dynamics of a Thermodynamically Consistent Particle Model. Arch Rational Mech Anal 223, 1397–1425 (2017). https://doi.org/10.1007/s00205-016-1062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1062-3

Navigation