Skip to main content
Log in

A Variational Approach to Particles in Lipid Membranes

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A variety of models for the membrane-mediated interaction of particles in lipid membranes, mostly well-established in theoretical physics, is reviewed from a mathematical perspective. We provide mathematically consistent formulations in a variational framework, relate apparently different modelling approaches in terms of successive approximation, and investigate existence and uniqueness. Numerical computations illustrate that the new variational formulations are directly accessible to effective numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. No. 140 in Pure and Applied Mathematics. Elsevier, Oxford, 2003

  2. Ananthakrishnan R., Ehrlicher A.: The forces behind cell movement. Int. J. Biol. Sci. 3(5), 303 (2007)

    Article  Google Scholar 

  3. Babuska I.: The finite element method with penalty. Math. Comput. 27(122), 221–228 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bahrami, A.H., Raatz, M., Agudo-Canalejo, J., Michel, R., Curtis, E.M., Hall, C.K., Gradzielski, M., Lipowsky, R., Weikl, T.R.: Wrapping of nanoparticles by membranes. Adv. Colloid Interface Sci. 208, 214–224 (2014). doi:10.1016/j.cis.2014.02.012. Special issue in honour of Wolfgang Helfrich

  5. Barrett J.W., Elliott C.M.: Finite element approximation of the Dirichlet problem using the boundary penalty method. Numerische Mathematik 49(4), 343–366 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barrett J.W., Garcke H., Nürnberg R.: Parametric approximation of Willmore flow and related geometric evolution equations. SIAM J. Sci. Comput. 31, 225–253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartolo, D., Fournier, J.B.: Elastic interaction between “hard” or “soft” pointwise inclusions on biological membranes. Eur. Phys. J. E: Soft Matter Biol. Phys. 11(2): 141–146 (2003). doi:10.1140/epje/i2002-10154-5

  8. Blom J.G., Peletier M.A.: A continuum model of lipid bilayers. Eur. J. Appl. Math. 4, 487–508 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brannigan, G., Brown, F.L.H.: A model for lipid bilayers in implicit solvent. Coarse-Graining of Condensed Phase and Biomolecular Systems (Ed. Voth G.A.). CRC Press, 41–58, 2008

  10. Brezis H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  11. Buttazzo, G., Nazarov, S.A.: Optimal location of support points in the Kirchhoff plate. Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design. Springer, Berlin, 93–116, 2012

  12. Canham P.B.: The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26, 61–81 (1970)

    Article  Google Scholar 

  13. Ciarlet, P.G.: Conforming and nonconforming finite element methods for solving the plate problem. Conference on the Numerical Solution of Differential Equations. Lecture Notes in Mathematics, Vol. 363 (Ed. Watson G.A.). Springer, Berlin, 21–31, 1974

  14. Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Oxford (1978)

    MATH  Google Scholar 

  15. Deckelnick K., Dziuk G., Elliott C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numerica 14, 139–232 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Dieudonné J.: Treatise on Analysis II. Academic Press, New York (1970)

    MATH  Google Scholar 

  17. Dommersnes, P.G., Fournier, J.B.: Casimir and mean-field interactions between membrane inclusions subject to external torques. EPL (Europhys. Lett.) 46(2), 256 (1999). http://stacks.iop.org/0295-5075/46/i=2/a=256

  18. Dommersnes, P.G., Fournier, J.B.: The many-body problem for anisotropic membrane inclusions and the self-assembly of “saddle” defects into an “egg carton”. Biophys. J. 83(6), 2898–2905 (2002). doi:10.1016/S0006-3495(02)75299-5. http://www.sciencedirect.com/science/article/pii/S0006349502752995

  19. Dommersnes P.G., Fournier J.B., Galatola P.: Long-range elastic forces between membrane inclusions in spherical vesicles. Europhys. Lett. 42, 233–238 (1998)

    Article  ADS  Google Scholar 

  20. Du Q.: Phase field calculus, curvature-dependent energies, and vesicle membranes. Philos. Mag. 91, 165–181 (2011)

    Article  ADS  Google Scholar 

  21. Dziuk G., Elliott C.M.: Finite element methods for surface partial differential equations. Acta Numerica 22, 289–396 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dziuk, G., Elliott, C.M., Huisken, G., Kornhuber, R. (eds.): Geometric Partial Differential Equations: Theory, Numerics and Applications. Oberwolfach Reports, Iss. 4, No. 54/2011, Vol. 8. European Mathematical Society (EMS), 2011

  23. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. SIAM, Philadelphia, 1999

  24. Elliott C.M., Stinner B.: Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229, 6585–6612 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Elliott C.M., Stinner B.: Computation of two-phase biomembranes with phase dependent material parameters using surface finite elements. Commun. Comput. Phys. 13, 325–360 (2013)

    Article  MathSciNet  Google Scholar 

  26. Evans, A.R., Turner, M.S., Sens, P.: Interactions between proteins bound to biomembranes. Phys. Rev. E 67, 041907 (2003). doi:10.1103/PhysRevE.67.041907

  27. Evans E.A.: Bending resistance and chemically induced moments in membrane bilayers. Biophys. J. 14, 923–931 (1974)

    Article  ADS  Google Scholar 

  28. Garcke, H., Niethammer, B., Peletier, M.A., Röger, M. (eds.): Mathematics of Biological Membranes. Oberwolfach Reports, Iss. 3, No. 41/2008, Vol. 5. European Mathematical Society (EMS), 2008

  29. Glowinski R., Pan T.W., Périaux J.: Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Comput. Methods. Appl. Mech. Eng. 111, 283–303 (1994)

    Article  ADS  Google Scholar 

  30. Goulian M., Bruinsma R., Pincus P.: Long-range forces in heterogeneous fluid membranes. Europhys. Lett. 22, 145–150 (1993)

    Article  ADS  Google Scholar 

  31. Gov N.S., Gopinathan A.: Dynamics of membranes driven by actin polymerization. Biophys. J. 90(2), 454–469 (2006)

    Article  ADS  Google Scholar 

  32. Gräser, C.: A note on Poincaré- and Friedrichs-type inequalities (2015). Preprint. arXiv:1512.02842

  33. Helfrich P., Jakobsson E.: Calculation of deformation energies and conformations in lipid membranes containing gramicidin channels. Biophys. J. 57, 1075–1084 (1990)

    Article  Google Scholar 

  34. Helfrich W.: Elastic properties of lipid bilayers—theory and possible experiments. Z. Naturforsch. C28, 693–703 (1973)

    Google Scholar 

  35. Hobbs, G.: Particles and biomembranes: a variational pde approach. Ph.D. thesis, University of Warwick (in preparation)

  36. Hu J., Weikl T.R., Lipowsky R.: Vesicles with multiple membrane domains. Soft Matter 7, 6092 (2011)

    Article  ADS  Google Scholar 

  37. Huang H.W.: Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys. J. 50, 1061–1070 (1990)

    Article  Google Scholar 

  38. Jud, A.: Monte-Carlo-simulation einer überstruktur auf lipidmembranen. Ph.D. thesis, Freie Universität Berlin, 1998

  39. Jülicher F., Lipowsky R.: Shape transformations of vesicles with intramembrane domains. Phys. Rev. E 53, 2670–2683 (1996)

    Article  ADS  Google Scholar 

  40. Kim, K.S., Neu, J., Oster, G.: Curvature-mediated interactions between membrane proteins. Biophys. J. 75(5), 2274–2291 (1998). doi:10.1016/S0006-3495(98)77672-6. http://www.sciencedirect.com/science/article/pii/S0006349598776726

  41. Kim K.S., Neu J., Oster G.: Effect of protein shape on multibody interactions between membrane inclusions. Phys. Rev. E 61(4), 4281–4285 (2000)

    Article  ADS  Google Scholar 

  42. Koltover, I., Rädler, J.O., Safinya, C.R.: Membrane mediated attraction and ordered aggregation of colloidal particles bound to giant phospholipid vesicles. Phys. Rev. Lett. 82, 1991–1994 (1999). doi:10.1103/PhysRevLett.82.1991

  43. Kuwert E., Schätzle R.: The Willmore flow with small initial energy. J. Differ. Geom. 57, 409–441 (2004)

    MathSciNet  MATH  Google Scholar 

  44. Laradji M., Kumar P.: Coarse-grained computer simulations of multicomponent lipid membranes. Adv. Planar Lipid Bilayers Liposomes 14, 201–233 (2011)

    Article  Google Scholar 

  45. Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem. RAIRO Anal. Numer. 9(1), 9–53 (1975)

  46. Lipowsky R.: The conformation of membranes. Nature 349, 475–481 (1991)

    Article  ADS  Google Scholar 

  47. Lipowsky R.: Budding of membranes induced by intermembrane domains. J. Phys. II Fr. 2, 1825–1840 (1992)

    Google Scholar 

  48. Marchenko, V.I., Misbah, C.: Elastic interaction of point defects on biological membranes. Eur. Phys. J. E: Soft Matter Biol. Phys. 8(5), 477–484 (2002). doi:10.1140/epje/i2001-10111-x

  49. Mattila P.K., Lappalainen P.: Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446–454 (2008)

    Article  Google Scholar 

  50. McMahon H.T., Gallop J.L.: Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005)

    Article  ADS  Google Scholar 

  51. Meinecke M., Boucrot E., Camdere G., Hon W.C., Mittaland R., McMahon H.T.: Cooperative recruitment of dynamin and BIN/amphiphysin/Rvs (BAR) domain-containing proteins leads to GTP-dependent membrane scission. J. Biol. Chem. 288, 6651–6661 (2013)

    Article  Google Scholar 

  52. Mitov M.D.: Third and fourth order curvature elasticity of lipid bilayers. C. R. Acad. Bulg. Sci. 31, 513 (1978)

    MATH  Google Scholar 

  53. Naji, A., Atzberger, P.J., Brown, F.L.H.: Hybrid elastic and discrete-particle approach to biomembrane dynamics with application to the mobility of curved integral membrane proteins. Phys. Rev. Lett. 102, 138102 (2009). doi:10.1103/PhysRevLett.102.138102

  54. Naji, A., Brown, F.L.H.: Diffusion on ruffled membrane surfaces. J. Chem. Phys. 126(23), 235103 (2007). doi:10.1063/1.2739526

  55. Netz R.: Inclusions in fluctuating membranes: exact results. J. Phys. I Fr. 7, 833–852 (1997)

    Article  Google Scholar 

  56. Nielsen C., Goulian M., Andersen O.S.: Energetics of inclusion-induced bilayer deformations. Biophys. J. 74, 1966–1983 (1998)

    Article  ADS  Google Scholar 

  57. Nitsche J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hamb. 39, 9–15 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  58. Park J.M., Lubensky T.C.: Interactions between membrane inclusions on fluctuating membranes. J. Phys. I Fr. 6, 1217–1235 (1996)

    Article  Google Scholar 

  59. Peletier M.A., Röger M.: Partial localization, lipid bilayers, and the elastica functional. Arch. Ration. Mech. Anal. 193, 475–537 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  60. Rautu S.A., Rowlands G., Turner M.S.: Membrane composition variation and underdamped mechanics near transmembrane proteins and cells. Phys. Rev. Lett. 114, 098101 (2015)

    Article  ADS  Google Scholar 

  61. Reynwar B.J., Illya G., Harmandaris V.A., Müller M.M., Kremer K., Deserno M.: Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447, 461–464 (2007)

    Article  ADS  Google Scholar 

  62. Rosso, R., Virga, E.G.: Inhomogeneities in biological membranes. Modeling of biological materials (Eds. Mollica F., Preziosi L. and Rajagopal K.R.) Birkhäuser, Basel, 323–357, 2007

  63. Saunders M., Voth G.: Coarse-graining methods for computational biology. Annu. Rev. Biophys. 42, 73–93 (2014)

    Article  Google Scholar 

  64. Schmidt U., Guigas G., Weiss M.: Cluster formation of transmembrane proteins due to hydrophobic mismatching. Phys. Rev. Let. 101, 128104 (2008)

    Article  ADS  Google Scholar 

  65. Seifert U.: Configurations of fluid membranes and vesicles. Adv. Phys. 46, 1–137 (1997)

    Article  Google Scholar 

  66. Sens, P., Turner, M.S.: Theoretical model for the formation of caveolae and similar membrane invaginations. Biophys. J. 86(4), 2049–2057 (2004). doi:10.1016/S0006-3495(04)74266-6. http://www.sciencedirect.com/science/article/pii/S0006349504742666

  67. Shillcock J., Lipowsky R.: Visualizing soft matter: mesoscopic simulations of membranes, vesicles, and nanoparticles. Biophys. Rev. Lett. 2, 33–55 (2007)

    Article  Google Scholar 

  68. Simunovic M., Voth G.A.: Membrane tension controls the assembly of curvature-generating proteins. Nature Commun. 6, 7219 (2015)

    Article  ADS  Google Scholar 

  69. Veksler A., Gov N.S.: Phase transitions of the coupled membrane-cytoskeleton modify cellular shape. Biophys. J. 93(11), 3798–3810 (2007)

    Article  ADS  Google Scholar 

  70. Wang Z.J., Deserno M.: A systematically coarse-grained solvent-free model for quantitative phospholipid bilayer simulations. J. Phys. Chem. B 114, 11207–11220 (2010)

    Article  Google Scholar 

  71. Weikl T.R., Kozlov M.M., Helfrich W.: Interaction of conical membrane inclusions: effect of lateral tension. Phys. Rev. E 57(6), 6988 (1998)

    Article  ADS  Google Scholar 

  72. Weitz S., Destainville N.: Attractive asymmetric inclusions in elastic membranes under tension: cluster phases and membrane invaginations. Soft Matter 9, 7804–7816 (2013)

    Article  ADS  Google Scholar 

  73. Willmore T.J.: Riemannian Geometry. Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  74. Wloka J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  75. Wolf, M.W.: Numerical analysis of hybrid models for particles in biological membranes. Ph.D. thesis, Freie Universität Berlin (in preparation)

  76. Yolcu C., Deserno M.: Membrane-mediated interactions between rigid inclusions: an effective field theory. Phys. Rev. E 86(3), 031906 (2012)

    Article  ADS  Google Scholar 

  77. Yolcu C., Haussman R.C., Deserno M.: The effective field theory approach towards membrane-mediated interactions between particles. Adv. Colloid Interface Sci. 208, 89–109 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Kornhuber.

Additional information

Communicated by C. Le Bris

This work is partially supported by Freie Universität Berlin via the associated project AP01 of CRC 1114 funded by Deutsche Forschungsgemeinschaft (DFG). G.H. was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) Grant EP/H023364/1 within the MASDOC Centre for Doctoral Training.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elliott, C.M., Gräser, C., Hobbs, G. et al. A Variational Approach to Particles in Lipid Membranes. Arch Rational Mech Anal 222, 1011–1075 (2016). https://doi.org/10.1007/s00205-016-1016-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1016-9

Navigation