Skip to main content

Variational Methods for Biomolecular Modeling

  • Chapter
  • First Online:
Variational Methods in Molecular Modeling

Part of the book series: Molecular Modeling and Simulation ((MMAS))

Abstract

Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Water constitutes a large percentage of cellular mass and therefore biomolecules are mostly living in an aqueous environment where various types of ions such as sodium (Na\(^{+}\)), potassium (K\(^{+}\)), calcium (Ca\(^{2+}\)), and chloride (Cl\(^{-}\)) present at different concentrations.

  2. 2.

    In Sect. 2, we use S to denote the surface function, which is a domain indicator, and use \(\varPhi \) to denote the electrostatic potential following the traditional usage in the studies of biomolecular electrostatics. Here in Sects. 3 and 4 the models do not involve electrostatics, and we denote \(\phi \) the phase field function, while use S to denote the 2D surface embedded in \(\mathbb {R}^3\) when applicable. An interface in Sect. 2 refers to solvent-solute boundary region, whereas in Sects. 3 and 4, it refers a boundary curve on a given surface.

  3. 3.

    A protein unit consisting of several segments such as most ion channel proteins or G-protein-coupled receptors (GPCRs) is not taken as a distinct domain in this study. The whole unit is considered as a single protein instead.

References

  1. M. Adkins. Modeling local pattern formation on membrane surfaces using nonlocal interactions. Ph.D. thesis, Colorado State University, 2015

    Google Scholar 

  2. B. Alberts, A. Johnson, J. Lewis, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland, Martin Raff, 2002)

    Google Scholar 

  3. R.G.W. Anderson, K. Jacobson, A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825 (2002)

    Google Scholar 

  4. T. Apajalahti, P. Niemela, P.N. Govindan, M.S. Miettinen, E. Salonen, S.-J. Marrink, I. Vattulainen, Concerted diffusion of lipids in raft-like membranes. Faraday Discuss. 144, 411–430 (2010)

    Google Scholar 

  5. G. Archontis, T. Simonson, M. Karplus, Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. application to amino acid recognition by Aspartyl-tRNA synthetase. J. Mol. Biol. 306(2), 307–327 (2001)

    Article  Google Scholar 

  6. C. Azuara, E. Lindahl, P. Koehl, H. Orland, M. Delarue, PDB_Hydro: incorporating dipolar solvents with variable density in the Poisson-Boltzmann treatment of macromolecule electrostatics. Nucleic Acids Res. 34(Web-Server-Issue), 38–42 (2006)

    Google Scholar 

  7. N.A. Baker, Biomolecular applications of Poisson-Boltzmann methods. Rev. Comput. Chem. 21, 349–379 (2005)

    Google Scholar 

  8. P.W. Bates, Z. Chen, Y.H. Sun, G.W. Wei, S. Zhao, Geometric and potential driving formation and evolution of biomolecular surfaces. J. Math. Biol. 59, 193–231 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. P.W. Bates, G.W. Wei, S. Zhao, The minimal molecular surface (2006). arXiv:q-bio/0610038v1, [q-bio.BM]

  10. P.W. Bates, G.W. Wei, S. Zhao, Minimal molecular surfaces and their applications. J. Comput. Chem. 29(3), 380–91 (2008)

    Article  Google Scholar 

  11. T. Baumgart, B.R. Capraro, C. Zhu, S.L. Das, Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Ann. Rev. Phys. Chem. 62, 483–506 (2011)

    Article  Google Scholar 

  12. S.C. Brenner, G. Shiyuan, T. Gudi, L.-Y. Sung, A quadratic c0 interior penalty method for linear fourth order boundary value problems with boundary conditions of the Cahn-Hilliard type. SIAM J. Numer. Anal. 50(4), 2088–2110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Brewster, P.A. Pincus, S.A. Safran, Hybrid lipids as a biological surface-active component. Biophys. J. 97, 1087–1094 (2009)

    Article  Google Scholar 

  14. R. Brewster, S.A. Safran, Line active hybrid lipids determine domain size in phase separation of saturated and unsaturated lipids. Biophys. J. 98(6), L21–L23 (2010)

    Article  Google Scholar 

  15. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus, CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983)

    Article  Google Scholar 

  16. K.M. Callenberg, N.R. Latorraca, M. Grabe, Membrane bending is critical for the stability of voltage sensor segments in the membrane. J. Gen. Physiol. 140, 55–68 (2012)

    Article  Google Scholar 

  17. A.B. Camley, F.L.H. Brown, Dynamic simulations of multicomponent lipid membranes over long length and time scales. Phys. Rev. Lett. 105, 148102 (2010)

    Article  Google Scholar 

  18. F. Campelo, A. Hernandez-Machado, Shape instabilities in vesicles: a phase-field model. Euro. Phys. J. Spec. Top. 143(1), 101–108 (2007)

    Article  Google Scholar 

  19. P.B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Math. Biol. 26, 61–81 (1970)

    Google Scholar 

  20. D.A. Case, D.A. Pearlman, J.W. Caldwell, T.E. Cheatham, W.S. Ross, C.L. Simmerling, T.A. Darden, K.M. Merz, R.V. Stanton, A.L. Cheng, J.J. Vincent, M. Crowley, D.M. Ferguson, V. Tsui, R.J. Radmer, Y. Duan, J. Pitera, I. Massova, G.L. Seibel, U.C. Singh, P.K. Weiner, P.A. Kollman, Amber 7.0 (University of California, San Francisco, CA, 2002)

    Google Scholar 

  21. J. Che, J. Dzubiella, B. Li, J.A. McCammon, Electrostatic free energy and its variations in implicit solvent models. J. Phys. Chem. B 112, 3058–3069 (2008)

    Google Scholar 

  22. M. Chen, T. Bin, Benzhuo Lu, Triangulated manifold meshing method preserving molecular surface topology. J. Mole. Graph. Model. 38, 411–418 (2012)

    Google Scholar 

  23. X. Chen, Q. Cui, Computational molecular biomechanics: a hierarchical multiscale framework with applications to gating of mechanosensitive channels of large conductance, in Trends in Computational Nanomechanics, vol. 9, Challenges and Advances in Computational Chemistry and Physics, ed. by Traian Dumitrica (Springer, Netherlands, 2010), pp. 535–556

    Chapter  Google Scholar 

  24. X. Chen, Spectrum for the allen-cahn, cahn-hilliard, and phase-field equations for generic interfaces. Commun. Partial Differ. Equ. 19, 1371–1395 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Z. Chen, G.W. Wei, Differential geometry based solvation models III: Quantum formulation. J. Chem. Phys. 135, 194108 (2011)

    Article  Google Scholar 

  26. Z. Chen, N.A. Baker, G.W. Wei, Differential geometry based solvation model II: Lagrangian formulation. J. Math. Biol. 63(6), 1139–1200 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Z. Chen, N.A. Baker, G.W. Wei, Differential geometry based solvation model I: Eulerian formulation. J. Comput. Phys. 229(22), 8231–8258 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Z. Chen, S. Zhao, J. Chun, D.G. Thomas, N.A. Baker, P.W. Bates, G.W. Wei, Variational approach for nonpolar solvation analysis. J. Chem. Phys. 137(8) (2012)

    Google Scholar 

  29. L.T. Cheng, J. Dzubiella, A.J. McCammon, B. Li, Application of the level-set method to the implicit solvation of nonpolar molecules. J. Chem. Phys. 127(8) (2007)

    Google Scholar 

  30. L.-T. Cheng, Y. Xie, J. Dzubiella, J.A. McCammon, J. Che, B. Li, Coupling the level-set method with molecular mechanics for variational implicit solvation of nonpolar molecules. J. Chem. Theor. Comput. 5(2), 257–266 (2009). PMID: 20150952

    Google Scholar 

  31. C. Chipot, Free energy calculations in biological systems. How useful are they in practice?, in New Algorithms for Macromolecular Simulation, ed. by B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte, R. Skeel (Springer, Berlin, Heidelberg, 2006), pp. 185–211

    Google Scholar 

  32. S. Choe, K.A. Hecht, M. Grabe, A continuum method for determining membrane protein insertion energies and the problem of charged residues. J. Gen. Physiol. 131, 563–6573 (2008)

    Article  Google Scholar 

  33. N. Choudhury, B.M. Pettitt, On the mechanism of hydrophobic association of nanoscopic solutes. J. Am. Chem. Soc. 127(10), 3556–3567 (2005)

    Article  Google Scholar 

  34. V.B. Chu, Y. Bai, J. Lipfert, D. Herschlag, S. Doniach, Evaluation of ion binding to DNA duplexes using a size-modified Poisson-Boltzmann theory. Biophys. J. 93, 3202–3209 (2007)

    Article  Google Scholar 

  35. F.S. Cohen, R. Eisenberg, R.J. Ryham, A dynamic model of open vesicles in fluids. Commun. Math. Sci. 10, 1273–1285 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Concus, G.H. Golub, Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations. SIAM J. Numer. Anal. 10(6), 1103–1120 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. I.R. Cooke, M. Deserno, Coupling between lipid shape and membrane curvature. Biophys. J. 91(2), 487–495 (2006)

    Article  Google Scholar 

  38. S. Dai, K. Promislow, Geometric evolution of bilayers under the functionalized Cahn-Hilliard equation. Proc. R. Soc. A 469, 20120505 (2013)

    Article  MathSciNet  Google Scholar 

  39. M. Daily, J. Chun, A. Heredia-Langner, G.W. Wei, N.A. Baker, Origin of parameter degeneracy and molecular shape relationships in geometric-flow calculations of solvation free energies. J. Chem. Phys. 139, 204108 (2013)

    Article  Google Scholar 

  40. M.E. Davis, J.A. McCammon, Electrostatics in biomolecular structure and dynamics. Chem. Rev. 90(3), 509–521 (1990)

    Article  Google Scholar 

  41. K.A. Dill, S. Bromberg, Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology, 2 edn. (Garland Science, 2010)

    Google Scholar 

  42. Q. Du, C. Liu, R. Ryham, X. Wang, Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation. Commun. Pure Appl. Anal. 4, 537–548 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Q. Du, L. Ju, L. Tian, Finite element approximation of the Cahn-Hilliard equation on surfaces. Comput. Methods Appl. Mech. Eng. 200(29–32), 2458–2470 (2011)

    Google Scholar 

  44. Q. Du, C. Liu, R. Ryham, X. Wang, A phase field formulation of the Willmore problem. Nonlinearity 18, 1249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Q. Du, C. Liu, X. Wang, Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys. 212(2), 757–777 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. J. Dzubiella, J.M.J. Swanson, J.A. McCammon, Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models. Phys. Rev. Lett. 96, 087802 (2006)

    Article  Google Scholar 

  47. J. Dzubiella, J.M.J. Swanson, J.A. McCammon, Coupling nonpolar and polar solvation free energies in implicit solvent models. J. Chem. Phys. 124(8) (2006)

    Google Scholar 

  48. H. Edelsbrunner, P. Koehl, The geometry of biomolecular solvation, in Combinatorial and Computational Geometry, pp. 243–276 (2005)

    Google Scholar 

  49. E.A. Evans, Bending resistance and chemically induced moments in membrane bilayers. Biophys. J. 14, 923–931 (1974)

    Article  Google Scholar 

  50. J. Faraudo, Diffusion equation on curved surfaces. I. Theory and application to biological membranes. J. Chem. Phys. 116, 5831 (2002)

    Article  Google Scholar 

  51. K. Farsad, P.D. Camilli, Mechanisms of membrane deformation. Curr. Opin. Cell Biol. 15, 372–381 (2003)

    Article  Google Scholar 

  52. M. Feig, C.L. Brooks, Recent advances in the development and application of implicit solvent models in biomolecule simulations. Curr. Opin. Struct. Biol. 14(2), 217–224 (2004)

    Article  Google Scholar 

  53. N. Fuller, C.R. Benatti, R. Peter Rand, Curvature and bending constants for phosphatidylserine-containing membranes. Biophys. J. 85, 1667–1674 (2003)

    Google Scholar 

  54. E. Gallicchio, R.M. Levy, AGBNP: an analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling. J. Comput. Chem. 25(4), 479–499 (2004)

    Article  Google Scholar 

  55. E. Gallicchio, L.Y. Zhang, R.M. Levy, The SGB/NP hydration free energy model based on the surface generalized Born solvent reaction field and novel nonpolar hydration free energy estimators. J. Comput. Chem. 23(5), 517–529 (2002)

    Article  Google Scholar 

  56. L.-T. Gao, X.-Q. Feng, H. Gao, A phase field method for simulating morphological evolution of vesicles in electric fields. J. Comput. Phys. 228(11), 4162–4181 (2009)

    Article  MATH  Google Scholar 

  57. N. Gavish, G. Hayrapetyan, K. Promislow, L. Yang, Curvature driven flow of bi-layer interfaces. Phys. D: Nonlinear Phenom. 240(7), 675–693 (2011)

    Article  MATH  Google Scholar 

  58. W. Geng, G.W. Wei, Multiscale molecular dynamics using the matched interface and boundary method. J. Comput. Phys. 230(2), 435–457 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  59. M.K. Gilson, M.E. Davis, B.A. Luty, J.A. McCammon, Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation. J. Phys. Chem. 97(14), 3591–3600 (1993)

    Google Scholar 

  60. J.A. Grant, B.T. Pickup, A Gaussian description of molecular shape. J. Phys. Chem. 99, 3503–3510 (1995)

    Article  Google Scholar 

  61. J.A. Grant, B.T. Pickup, A. Nicholls, A smooth permittivity function for Poisson-Boltzmann solvation methods. J. Comput. Chem. 22(6), 608–640 (2001)

    Article  Google Scholar 

  62. J.A. Grant, B.T. Pickup, M.T. Sykes, C.A. Kitchen, A. Nicholls, The Gaussian Generalized Born model: application to small molecules. Phys. Chem. Chem. Phys. 9, 4913–22 (2007)

    Article  Google Scholar 

  63. P. Grochowski, J. Trylska, Continuum molecular electrostatics, salt effects, and counterion binding—a review of the Poisson-Boltzmann theory and its modifications. Biopolymers 89, 93–113 (2008)

    Article  Google Scholar 

  64. J. Gumbart, B. Roux, Determination of membrane-insertion free energies by molecular dynamics simulations. Biophys. J. 102, 795–801 (2012)

    Article  Google Scholar 

  65. W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch 28c, 693–703 (1973)

    Google Scholar 

  66. H.J. Hocker, K.-J. Cho, C.-Y.K. Chen, N. Rambahal, S.R. Sagineedu, K. Shaari, J. Stanslas, J.F. Hancock, A.A. Gorfe, Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function. Proc. Natl. Acad. Sci. U.S.A. 110(25), 10201–10206 (2013)

    Google Scholar 

  67. T.-L. Horng, T.-C. Lin, C. Liu, B. Eisenberg, PNP equations with steric effects: a model of ion flow through channels. J. Phys. Chem. B 116(37), 11422–11441 (2012)

    Article  Google Scholar 

  68. M.D. Huang, D. Chandler, Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding. Proc. Natl. Acad. Sci. 97(15), 8324–8327 (2000)

    Article  Google Scholar 

  69. Y. Hyon, B. Eisenberg, C. Liu, A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 9, 459–475 (2011)

    Google Scholar 

  70. Y. Hyon, J.E. Fonseca, B. Eisenberg, C. Liu, Energy variational approach to study charge inversion (layering) near charged walls. Discrete Contin. Dyn. Syst. Ser. B 17, 2725–2743 (2012)

    Google Scholar 

  71. Y.K. Hyon, B. Eisenberg, C. Liu, An energetic variational approach to ion channel dynamics. Math. Methods Appl. Sci. 37(7), 952–961 (2014)

    Google Scholar 

  72. A. Ivankin, I. Kuzmenko, D. Gidalevitz, Cholesterol mediates membrane curvature during fusion events. Phys. Rev. Lett. 108, 238103 (2012)

    Article  Google Scholar 

  73. A. Jaramillo, S.J. Wodak, Computational protein design is a challenge for implicit solvation models. Biophys. J. 88, 156–171 (2005)

    Article  Google Scholar 

  74. K.S. Kim, J. Neu, G. Oster, Curvature-mediated interactions between membrane proteins. Biophys. J. 75, 2274–2291 (1998)

    Article  Google Scholar 

  75. T. Kirchhausen, Bending membranes. Nat. Cell Biol. 14, 906–908 (2012)

    Article  Google Scholar 

  76. W. Kuhnel, Differential Geometry: Curves, Surfaces, Manifolds (AMS, 2006)

    Google Scholar 

  77. B. Lee, F.M. Richards, The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55(3), 379–400 (1971)

    Article  Google Scholar 

  78. H.G. Lee, J. Kim, Regularized dirac delta functions for phase field models. Int. J. Numer. Methods Eng. 91(3), 269–288 (2012)

    Google Scholar 

  79. M.S. Lee, M.A. Olson, Comparison of volume and surface area nonpolar solvation free energy terms for implicit solvent simulations. J. Chem. Phys. 139(4) (2013)

    Google Scholar 

  80. G.P. Leser, R.A. Lamb, Influenza virus assembly and budding in raft-derived microdomains: a quantitative analysis of the surface distribution of HA, NA and M2 proteins. Virology 342(2), 215–227 (2005)

    Article  Google Scholar 

  81. R.M. Levy, L.Y. Zhang, E. Gallicchio, A.K. Felts, On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute-solvent interaction energy. J. Am. Chem. Soc. 125, 9523–9530 (2003)

    Google Scholar 

  82. B. Li, Minimization of electrostatic free energy and the Poisson-Boltzmann equation for molecular solvation with implicit solvent. SIAM J. Math. Anal. 40, 2536–2566 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  83. B. Li, Continuum electrostatics for ionic solutions with non-uniform ionic sizes. Nonlinearity 22, 811 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  84. B. Li, X. Cheng, Z. Zhou, Dielectric boundary force in molecular solvation with the Poisson-Boltzmann free energy: a shape derivative approach. SIAM J. Appl. Math. 71, 2093–2111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  85. H. Li, A.A. Gorfe, Aggregation of lipid-anchored full-length H-Ras in lipid bilayers: simulations with the MARTINI force field. PLoS ONE 8(7), e71018, 07 (2013)

    Google Scholar 

  86. S. Li, J. Lowengrub, A. Voigt, Locomotion, wrinkling, and budding of a multicomponent vesicle in viscous fluids. Commun. Math. Sci. 10, 645–670 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  87. H.Y. Lin, X. Zou, Electrostatics of ligand binding: parametrization of the generalized Born model and comparison with the Poisson-Boltzmann approach. J. Phys. Chem. B 110, 9304–9313 (2006)

    Article  Google Scholar 

  88. B. Lu, Y.C. Zhou, M. Holst, J.A. McCammon, Recent progress in numerical solution of the Poisson-Boltzmann equation for biophysical applications. Commun. Comput. Phys. 3, 973–1009 (2008)

    MATH  Google Scholar 

  89. B. Lu, Y.C. Zhou, Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II. Biophys. J. 100, 2475–2485 (2011)

    Article  Google Scholar 

  90. K. Lum, D. Chandler, J.D. Weeks, Hydrophobicity at small and large length scales. J. Phys. Chem. B 103(22), 4570–4577 (1999)

    Article  Google Scholar 

  91. V. Luzhkov, A. Warshel, Microscopic models for quantum-mechanical calculations of chemical processes in solutions—ld/ampac and scaas/ampac calculations of solvation energies. J. Comput. Chem. 13(2), 199–213 (1992)

    Article  Google Scholar 

  92. J.D. Madura, Y. Nakajima, R.M. Hamilton, A. Wierzbicki, A. Warshel, Calculations of the electrostatic free energy contributions to the binding free energy of sulfonamides to carbonic anhydrase. Struct. Chem. 7(2), 131–138 (1996)

    Article  Google Scholar 

  93. D. Marsh, Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys. J. 93, 3884–3899 (2007)

    Article  Google Scholar 

  94. A. Martinire, I. Lavagi, G. Nageswaran, D.J. Rolfe, L. Maneta-Peyret, D.-T. Luu, S.W. Botchway, S.E.D. Webb, S. Mongrand, C. Maurel, M.L. Martin-Fernandez, J. Kleine-Vehn, J. Friml, P. Moreau, J. Runions, Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 109(31), 12805–12810 (2012)

    Google Scholar 

  95. I. Massova, A. Kollman, Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect. Drug Discov. Des. 18(1), 113–135 (2000)

    Article  Google Scholar 

  96. H.T. McMahon, J.L. Gallop, Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005)

    Article  Google Scholar 

  97. M. Mikucki, Electromechanical and curvature-driven molecular flows for lipid membranes. Ph.D. thesis, Colorado State University, 2015

    Google Scholar 

  98. C. Mim, V.M. Unger, Membrane curvature and its generation by BAR proteins. Trends Biochem. Sci. 37(12), 526–533 (2012)

    Article  Google Scholar 

  99. A. Nicholls, D.L. Mobley, J. Peter Guthrie, J.D. Chodera, C.I. Bayly, M.D. Cooper, V.S. Pande, Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. J. Med. Chem. 51(4), 769–779 (2008). PMID: 18215013

    Google Scholar 

  100. S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Chem. Phys. 79(1), 12–49 (1988)

    MathSciNet  MATH  Google Scholar 

  101. I. Park, Y.H. Jang, S. Hwang, D.S. Chung, Poisson-Boltzmann continuum solvation models for nonaqueous solvents I. 1-octanol. Chem. Lett. 32(4), 376–377 (2003)

    Article  Google Scholar 

  102. R. Parthasarathy, Y. Cheng-Han, J.T. Groves, Curvature-modulated phase separation in lipid bilayer membranes. Langmuir 22(11), 5095–5099 (2006)

    Article  Google Scholar 

  103. D.L. Parton, J.W. Klingelhoefer, S.P. Mark, Aggregation of model membrane proteins, modulated by hydrophobic mismatch, membrane curvature, and protein class. Biophys. J. 101(3), 691–699 (2011)

    Article  Google Scholar 

  104. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kal, K. Schulten, Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)

    Article  Google Scholar 

  105. R.A. Pierotti, A scaled particle theory of aqueous and nonaqueous solutions. Chem. Rev. 76(6), 717–726 (1976)

    Article  Google Scholar 

  106. L.J. Pike, Lipid rafts: bringing order to chaos. J. Lipid Res. 44, 655–667 (2003)

    Article  MathSciNet  Google Scholar 

  107. S. Ramadurai, A. Holt, V. Krasnikov, G. van den Bogaart, J. Antoinette Killian, B. Poolman, Lateral diffusion of membrane proteins. J. Am. Chem. Soc. 131, 12650–12656 (2009)

    Google Scholar 

  108. M. Rami Reddy, C. Ravikumar Reddy, R.S. Rathore, M.D. Erion, P. Aparoy, R. Nageswara Reddy, P. Reddanna, Free energy calculations to estimate ligand-binding affinities in structure-based drug design. Curr. Pharm. Des. 20, 3323–3337 (2014)

    Google Scholar 

  109. P. Ren, J. Chun, D.G. Thomas, M.J. Schnieders, M. Marucho, J. Zhang, N.A. Baker, Biomolecular electrostatics and solvation: a computational perspective. Quart. Rev. Biophys. 45(11), 427–491 (2012)

    Google Scholar 

  110. B.J. Reynwar, G. Illya, V.A. Harmandaris, M.M. Muller, K. Kremer, M. Deserno, Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447, 461–464 (2006)

    Article  Google Scholar 

  111. F.M. Richards, Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng. 6(1), 151–176 (1977)

    Article  Google Scholar 

  112. J.E. Rothman, Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994)

    Article  Google Scholar 

  113. R.J. Ryham, M.A. Ward, F.S. Cohen, Teardrop shapes minimize bending energy of fusion pores connecting planar bilayers. Phys. Rev. E 88, 062701 (2013)

    Article  Google Scholar 

  114. T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide (Springer, 2002)

    Google Scholar 

  115. N.W. Schmidt, A. Mishra, J. Wang, W.F. DeGrado, C.L. Gerard, Wong. Influenza virus A M2 protein generates negative Gaussian membrane curvature necessary for budding and scission. J. Am. Chem. Soc. 135(37), 13710 (2013)

    Article  Google Scholar 

  116. K.A. Sharp, B. Honig, Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation. J. Phys. Chem. 94, 7684–7692 (1990)

    Article  Google Scholar 

  117. M.R. Shirts, D.L. Mobley, S.P. Brown, Free-energy calculations in structure-based drug design, in Drug Design: Structure- and Ligand-Based Approaches (Cambridge University Press, 2010)

    Google Scholar 

  118. K. Simons, D. Toomre, Lift rafts and signal transduction. Nat. Rev. Mol. Biol. 1, 31–40 (2000)

    Article  Google Scholar 

  119. T. Simonson, G. Archontis, M. Karplus, Free energy simulations come of age: protein-ligand recognition. Accounts Chem. Res. 35(6), 430–437 (2002)

    Article  Google Scholar 

  120. R.E. Skyner, J.L. McDonagh, C.R. Groom, T. van Mourik, J.B.O. Mitchell, A review of methods for the calculation of solution free energies and the modelling of systems in solution. Phys. Chem. Chem. Phys. 17, 6174–6191 (2015)

    Article  Google Scholar 

  121. T. Sollner, M.K. Bennett, S.W. Whiteheart, R.H. Scheller, J.E. Rothman, A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75(3), 409–418 (1993)

    Article  Google Scholar 

  122. J.C. Stachowiak, C.C. Hayden, D.Y. Sasaki, Steric confinement of proteins on lipid membranes can drive curvature and tubulation. Proc. Natl. Acad. Sci. U.S.A. 107(17), 7781–7786 (2010)

    Article  Google Scholar 

  123. O. Sten-Knudsen, Biological Membranes: Theory of Transport, Potential and Electric Impulses (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  124. F.H. Stillinger, Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J. Solut. Chem. 2, 141–158 (1973)

    Article  Google Scholar 

  125. J. Strain, Fast spectrally-accurate solution of variable-coefficient elliptic problems. Proc. Am. Math. Soc. 122, 843–850 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  126. S. Svetina, Curvature-dependent protein-lipid bilayer interaction and cell mechanosensitivity. Eur. Bio. Phys. J. 1–7 (2015)

    Google Scholar 

  127. J.M.J. Swanson, R.H. Henchman, J.A. McCammon, Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys. J. 86(1), 67–74 (2004)

    Article  Google Scholar 

  128. T. Takahashi, T. Suzuki, Function of membrane rafts in viral life cycles and host cellular response. Biochem. Res. Int. 2011, 245090 (2011)

    Article  Google Scholar 

  129. Y. Tang, G. Cao, X. Chen, J. Yoo, A. Yethiraj, Q. Cui, A finite element framework for studying the mechanical response of macromolecules: application to the gating of machanosensitive channel MscL. Biophys. J. 91, 1248–1263 (2006)

    Article  Google Scholar 

  130. K.E. Teigen, X. Li, J. Lowengrub, F. Wang, A. Voigt, A diffuse-interface approach for modelling transport, diffusion and adsorption/desorption of material quantities on a deformable interface. Commun. Math. Sci. 7, 1009–1037 (2009)

    Google Scholar 

  131. K.E. Teigen, P. Song, J. Lowengrub, A. Voigt, A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys. 230, 375–393 (2011)

    Google Scholar 

  132. D.G. Thomas, J. Chun, Z. Chen, G.W. Wei, N.A. Baker, Parameterization of a geometric flow implicit solvation model. J. Comput. Chem. 24, 687–695 (2013)

    Article  Google Scholar 

  133. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, J.C.H. Berendsen, GROMACS: fast, flexible, and free. J. Comput. Chem. 26(16), 1701–1718 (2005)

    Article  Google Scholar 

  134. F.S. Vieira, G. Correa, M. Einicker-Lamas, R. Coutinho-Silva, Host-cell lipid rafts: a safe door for micro-organisms? Biol. Cell 102(7), 391–407 (2010)

    Google Scholar 

  135. A. Voth, M.S. Gregory, Membrane tension controls the assembly of curvature-generating proteins. Nat. Commun. 6, 7219 (2015)

    Google Scholar 

  136. J. Wagoner, N.A. Baker, Solvation forces on biomolecular structures: a comparison of explicit solvent and Poisson-Boltzmann models. J. Comput. Chem. 25(13), 1623–1629 (2004)

    Article  Google Scholar 

  137. J.A. Wagoner, N.A. Baker, Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms. Proc. Natl. Acad. Sci. U.S.A. 103(22), 8331–8336 (2006)

    Article  Google Scholar 

  138. B. Wang, G.W. Wei, Parameter optimization in differential geometry based solvation models. J. Chem. Phys. 143, 134119 (2015)

    Article  Google Scholar 

  139. Y. Wang, G.W. Wei, S.-Y. Yang, Partial differential equation transform—variational formulation and Fourier analysis. Int. J. Numer. Methods Biomed. Eng. 27, 1996–2020 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  140. Y. Wang, G.W. Wei, S.-Y. Yang, Iterative filtering decomposition based on local spectral evolution kernel. J. Sci. Comput. 50, 629–664 (2012)

    Article  MathSciNet  Google Scholar 

  141. Y. Wang, G.W. Wei, S.-Y. Yang, Mode decomposition evolution equations. J. Sci. Comput. 50, 495–518 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  142. A. Warshel. Consistent calculations of electrostatic energies in proteins and solutions. Abstr. Pap. Am. Chem. Soc. 214, 191–COMP (1997)

    Google Scholar 

  143. A. Warshel, Z.T. Chu, Calculations of solvation free-energies in chemistry and biology, in ACS Symposium Series, vol. J9, no. 568, pp. 71–94 (1994)

    Google Scholar 

  144. A. Warshel, P.K. Sharma, M. Kato, W.W. Parson, Modeling electrostatic effects in proteins. BBA-Proteins Proteomics 1764, 1647–1676 (2006)

    Article  Google Scholar 

  145. G.W. Wei, Generalized Perona-Malik equation for image restoration. IEEE Signal Process. Lett. 6(7), 165–167 (1999)

    Article  Google Scholar 

  146. G.W. Wei, Y.H. Sun, Y.C. Zhou, M. Feig, Molecular multiresolution surfaces, pp. 1–11 (2005). arXiv:math-ph/0511001v1

  147. G.-W. Wei, Differential geometry based multiscale models. Bull. Math. Biol. 72(6), 1562–1622 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  148. G.-W. Wei, Multiscale, multiphysics and multidomain models I: basic theory. J. Chem. Theor. Comput. 12(8), 1341006 (2013)

    Article  Google Scholar 

  149. G.-W. Wei, Q. Zheng, Z. Chen, K. Xia, Variational multiscale models for charge transport. SIAM Rev. 54(4), 699–754 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  150. H. Whitney, Geometric Integration Theory (Dover, 2005)

    Google Scholar 

  151. T. Witkowski, R. Backofen, A. Voigt, The influence of membrane bound proteins on phase separation and coarsening in cell membranes. Phys. Chem. Chem. Phys. 14, 14509–14515 (2012)

    Article  Google Scholar 

  152. J.J. Xu, Y. Yang, J. Lowengrub, A level-set continuum method for two-phase flows with insoluble surfactant. J. Comput. Phys. 231(17), 5897–5909 (2012)

    Google Scholar 

  153. S. Xu, P. Sheng, C. Liu, An energetic variational approach for ion transport. Commun. Math. Sci. 12, 779–789 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  154. Z.Y. Yu, C. Bajaj, Computational approaches for automatic structural analysis of large biomolecular complexes. IEEE/ACM Trans. Comput. Biol. Bioinform. 5, 568–582 (2008)

    Article  Google Scholar 

  155. S. Zhao, Pseudo-time-coupled nonlinear models for biomolecular surface representation and solvation analysis. Int. J. Numer. Methods Biomed. Eng. 27, 1964–1981 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  156. S. Zhao, Operator splitting ADI schemes for pseudo-time coupled nonlinear solvation simulations. J. Comput. Phys. 257, 1000–1021 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  157. Y. Zhao, D. Qiang, Diffuse interface model of multicomponent vesicle adhesion and fusion. Phys. Rev. E 84, 011903 (2011)

    Article  Google Scholar 

  158. Q. Zheng, D. Chen, G.W. Wei, Second-order Poisson-Nernst-Planck solver for ion transport. J. Comput. Phys. 230, 5239–5262 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  159. Q. Zheng, S.Y. Yang, G.W. Wei, Molecular surface generation using PDE transform. Int. J. Numer. Methods Biomed. Eng. 28, 291–316 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  160. S. Zhou, L.-T. Cheng, J. Dzubiella, B. Li, J.A. McCammon, Variational implicit solvation with Poisson–Boltzmann theory. J. Chem. Theor. Comput. 10(4), 1454–1467 (2014). PMID: 24803864

    Google Scholar 

  161. Y.C. Zhou, Electrodiffusion of lipids on membrane surfaces. J. Chem. Phys. 136, 205103 (2012)

    Article  Google Scholar 

  162. Y.C. Zhou, B. Lu, A.A. Gorfe, Continuum electromechanical modeling of protein-membrane interactions. Phys. Rev. E 82(4), 041923 (2010)

    Article  Google Scholar 

  163. J. Zimmerberg, M.M. Kozlov, How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7, 9–19 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Wei Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Wei, GW., Zhou, Y. (2017). Variational Methods for Biomolecular Modeling. In: Wu, J. (eds) Variational Methods in Molecular Modeling. Molecular Modeling and Simulation. Springer, Singapore. https://doi.org/10.1007/978-981-10-2502-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2502-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2500-6

  • Online ISBN: 978-981-10-2502-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics