Skip to main content
Log in

Structure of Solutions of Multidimensional Conservation Laws with Discontinuous Flux and Applications to Uniqueness

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We investigate the structure of solutions of conservation laws with discontinuous flux under quite general assumption on the flux. We show that any entropy solution admits traces on the discontinuity set of the coefficients and we use this to prove the validity of a generalized Kato inequality for any pair of solutions. Applications to uniqueness of solutions are then given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, Mishra, S., Veerappa Gowda, G.D.: Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperb. Differ. Equ. 2(4), 783–837 (2005)

  2. Ambrosio, L.: Lecture notes on optimal transport problems. In: Mathematical Aspects of Evolving Interfaces. Lecture Notes in Mathematics, vol. 1812, pp. 1–52. Springer, Berlin, 2003

  3. Ambrosio L.: Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158(2), 227–260 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Crasta, G., De Cicco, V., De Philippis, G.: A nonautonomous chain rule in W 1,p and BV. Manuscr. Math. 140(3-4), 461–480 (2013)

  5. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2000

  6. Andreianov B., Karlsen K.H., Risebro N.H.: A theory of L 1-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201(1), 27–86 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andreianov B., Karlsen K.H., Risebro N.H.: On vanishing viscosity approximation of conservation laws with discontinuous flux. Netw. Heterog. Media 5(3), 617–633 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Andreianov, B., Mitrović, D.: Entropy conditions for scalar conservation laws with discontinuous flux revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(6), 1307–1335 (2015)

  9. Audusse E., Perthame B.: Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proc. R. Soc. Edinb. Sect. A 135(2), 253–265 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coclite, G.M., Risebro, N.H.: Conservation laws with time dependent discontinuous coefficients. SIAM J. Math. Anal. 36(4), 1293–1309 (2005) (electronic)

  11. Crasta, G., De Cicco, V., De Philippis, G.: Kinetic formulation and uniqueness for scalar conservation laws with discontinuous flux. Commun. Partial Differ. Equ. 40(4), 694–726 (2015)

  12. De Lellis, C.: Notes on hyperbolic systems of conservation laws and transport equations. In: Handbook of differential equations: evolutionary equations, vol. III. Handbook of Differential Equations, pp. 277–382. Elsevier/North-Holland, Amsterdam, 2007

  13. De Lellis C., Otto F., Westdickenberg M.: Structure of entropy solutions for multi-dimensional scalar conservation laws. Arch. Ration. Mech. Anal. 170(2), 137–184 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Diehl S.: A uniqueness condition for nonlinear convection-diffusion equations with discontinuous coefficients. J. Hyperb. Differ. Equ. 6(1), 127–159 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Garavello, M., Natalini, R., Piccoli, B., Terracina, A.: Conservation laws with discontinuous flux. Netw. Heterog. Media 2(1), 159–179 (2007) (electronic)

  17. Karlsen K.H., Risebro N.H., Towers J.D.: L 1 stability for entropy solutions of nonlinear degenerate parabolic convection–diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk. 3, 1–49 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Kružkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970)

  19. Lions P.-L., Perthame B., Tadmor E.: A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Am. Math. Soc. 7(1), 169–191 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mitrovic D.: New entropy conditions for scalar conservation laws with discontinuous flux. Discrete Contin. Dyn. Syst. 30(4), 1191–1210 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mitrovic, D.: Proper entropy conditions for scalar conservation laws with discontinuous flux. Technical report (2012)

  22. Panov E.Yu.: Existence of strong traces for quasi-solutions of multidimensional conservation laws. J. Hyperb. Differ. Equ. 4(4), 729–770 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Panov E.Yu.: Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux. Arch. Ration. Mech. Anal. 195(2), 643–673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vasseur A.: Strong traces for solutions of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal. 160(3), 181–193 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graziano Crasta.

Additional information

Communicated by A. Bressan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crasta, G., De Cicco, V., De Philippis, G. et al. Structure of Solutions of Multidimensional Conservation Laws with Discontinuous Flux and Applications to Uniqueness. Arch Rational Mech Anal 221, 961–985 (2016). https://doi.org/10.1007/s00205-016-0976-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-0976-0

Keywords

Navigation