Skip to main content
Log in

Local Existence of Weak Solutions to Kinetic Models of Granular Media

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove in any dimension \({d \geqq 1}\) a local in time existence of weak solutions to the Cauchy problem for the kinetic equation of granular media,

$$\partial_t f+v\cdot \nabla_x f = {div}_v[f(\nabla W *_v f)]$$

when the initial data are nonnegative, integrable and bounded functions with compact support in velocity, and the interaction potential \({W}\) is a \({C^2({\mathbb{R}}^d)}\) radially symmetric convex function. Our proof is constructive and relies on a splitting argument in position and velocity, where the spatially homogeneous equation is interpreted as the gradient flow of a convex interaction energy with respect to the quadratic Wasserstein distance. Our result generalizes the local existence result obtained by Benedetto et al. (RAIRO Modél Math Anal Numér 31(5):615–641, 1997) on the one-dimensional model of this equation for a cubic power-law interaction potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics, Birkhäuser, 2005

  2. Benedetto D., Caglioti E., Pulvirenti M.: A kinetic equation for granular media. RAIRO Modél. Math. Anal. Numér. 31(5), 615–641 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Bézard M.: Régularité précise des moyennes dans les équations de transport. Bull. Soc. Math. France 122, 29–76 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Benedetto D., Caglioti E., Pulvirenti M.: Erratum: A kinetic equation for granular media. M2AN Math. Model. Numer. Anal. 33, 439–441 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernu B., Mazighi R.: One-dimensional bounce of inelastic colliding marbles on a wall. J. Phys. A Math. Gen. 23, 5745–5754 (1990)

    Article  ADS  MATH  Google Scholar 

  6. Bertozzi, A.L., Laurent, T., Rosado, J.: \({L^p}\) theory for multidimensional aggregation model. Commun. Pure Appl. Math., 45–83 (2011)

  7. Bouchut, F., Golse, F., Pulvirenti, F.: Kinetic equations and asymptotic theory. Series in Applied Mathematics, Vol. 4 (Eds. Perthame, B. and Desvilettes, L.) Gauthier-Valars, Paris, 2000

  8. Brenier Y.: Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris Sér. I Math. 305(19), 805–808 (1987)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Carlen E., Gangbo W.: Solution of a model Boltzmann equation via steepest descent in the 2-Wasserstein metric. Arch. Ration. Mech. Anal. 172(1), 21–64 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carrillo J.A., McCann R.J., Villani C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19, 1–48 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Carrillo J.A., McCann R.J., Villani C.: Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal. 179, 217–263 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carrillo J.A., DiFrancesco M., Figalli A., Laurent L., Slepcev D.: Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156(2), 229–271 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin P., Grossman E., Mungan M.: Inelastic collisions of three particles on a line as a tow-dimensional billiard. Phys. D. 83, 409–420 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. DiPerna L.A., Lions P.L.: Global solutions of Boltzmann’s equation and the entropy inequality. Arch. Ration. Mech. Anal. 114, 47–55 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duran J.: Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials. Springer, New York (1999)

    Google Scholar 

  16. Goldhirsch I., Zanetti G.: Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 1619–1622 (1993)

    Article  ADS  Google Scholar 

  17. Grafakos, L.: Modern Fourier analysis. Graduate Texts in Mathematics, Vol. 250, 2nd edn. Springer, New York, 2009

  18. Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Laurent T.: Local and global existence for an aggregation equation. Commun. Partial Differ. Equ. 32, 1941–1964 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li H., Toscani G.: Long-time asymptotics of kinetic models of granular flows. Arch. Ration. Mech. Anal. 172, 407–428 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lieb, E., Loss, M.: Analysis. Graduate Studies in Mathematics, Vol. 14. American Mathematical Society, Providence, 1997

  22. Mac Namara, S., Young, W.R.: Inelastic collapse and clumping in a one-dimensional granular medium. Phys. Fluids A4 3, 496–504 (1992)

  23. McCann R.J.: A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Neunzert H.: The Vlasov equation as a limit of Hamiltonian classical mechanical interacting particles. Trans. Fluid Dyn 18, 663–678 (1997)

    Google Scholar 

  25. Toscani G.: One-dimensional kinetic models for granular flows. RAIRO Modél. Math. Anal. Numér. 34, 1277–1292 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Villani, C.: Topics in optimal transportation. Graduate Studies in Mathematics, Vol. 58. AMS, Providence, 2003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martial Agueh.

Additional information

Communicated by D. Kinderlehrer

M. Agueh is supported by a grant from the Natural Science and Engineering Research Council of Canada (NSERC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agueh, M. Local Existence of Weak Solutions to Kinetic Models of Granular Media. Arch Rational Mech Anal 221, 917–959 (2016). https://doi.org/10.1007/s00205-016-0975-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-0975-1

Keywords

Navigation