Skip to main content
Log in

Differential Complexes in Continuum Mechanics

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study some differential complexes in continuum mechanics that involve both symmetric and non-symmetric second-order tensors. In particular, we show that the tensorial analogue of the standard grad-curl-div complex can simultaneously describe the kinematics and the kinetics of motion of a continuum. The relation between this complex and the de Rham complex allows one to readily derive the necessary and sufficient conditions for the compatibility of displacement gradient and the existence of stress functions on non-contractible bodies.We also derive the local compatibility equations in terms of the Green deformation tensor for motions of 2D and 3D bodies, and shells in curved ambient spaces with constant curvatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrose W.: Parallel translation of Riemannian curvature. Ann. Math. 64, 337–363 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  2. Angoshtari, A., Yavari, A.: Hilbert complexes, orthogonal decompositions, and potentials for nonlinear continua. Submitted.

  3. Arnold D.N., Falk R.S., Winther R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1–155 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Arnold D.N., Falk R.S., Winther R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bul. Am. Math. Soc. 47, 281–354 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baston R.J., Eastwood M.G.: The Penrose Transformation: its Interaction with Representation Theory. Oxford University Press, Oxford (1989)

    MATH  Google Scholar 

  6. Bott R., Tu L.W.: Differential Forms in Algebraic Topology. Springer, New York (2010)

    Google Scholar 

  7. Bredon G.E.: Topology and Geometry. Springer, New York (1993)

    Book  MATH  Google Scholar 

  8. Calabi, E.: On compact Riemannian manifolds with constant curvature I. Differential Geometry. Proc. Symp. Pure Math. vol. III, pp. 155–180. Amer. Math. Soc., Providence (1961)

  9. Carlson D.E.: On Günther’s stress functions for couple stresses. Q. Appl. Math. 25, 139–146 (1967)

    MATH  Google Scholar 

  10. do Carmo, M.: Riemannian Geometry. Birkhäuser, Boston (1992)

  11. Ciarlet P.G., Gratie L., Mardare C.: A new approach to the fundamental theorem of surface theory. Arch. Rational Mech. Anal. 188, 457–473 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Eastwood M.G.: A complex from linear elasticity. Rend. Circ. Mat. Palermo, Serie II, Suppl. 63, 23–29 (2000)

    MathSciNet  Google Scholar 

  13. Gasqui J., Goldschmidt H.: Déformations infinitésimales des espaces Riemanniens localement symétriques. I. Adv. Math. 48, 205–285 (1983)

    MATH  MathSciNet  Google Scholar 

  14. Gasqui J., Goldschmidt H.: Radon Transforms and the Rigidity of the Grassmannians. Princeton University Press, Princeton (2004)

    MATH  Google Scholar 

  15. Geymonat G., Krasucki F.: Hodge decomposition for symmetric matrix fields and the elasticity complex in Lipschitz domains. Commun. Pure Appl. Anal. 8, 295–309 (2009)

    MATH  MathSciNet  Google Scholar 

  16. Gilkey P.B.: Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem. Publish or Perish, Wilmington (1984)

    MATH  Google Scholar 

  17. Gurtin M.E.: A generalization of the Beltrami stress functions in continuum mechanics. Arch. Rational Mech. Anal. 13, 321–329 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Hackl K., Zastrow U.: On the existence, uniqueness and completeness of displacements and stress functions in linear elasticity. J. Elast. 19, 3–23 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ivey, T.A., Landsberg, J.M.: Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems. American Mathematical Society, Providence (2003)

  20. Kobayashi S., Nomizu K.: Foundations of Differential Geometry, vol. 1. Interscience Publishers, New York (1963)

    Google Scholar 

  21. Kobayashi S., Nomizu K.: Foundations of Differential Geometry, vol. 2. Interscience Publishers, New York (1969)

    Google Scholar 

  22. Kröner E.: Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Arch. Rational Mech. Anal. 4, 273–334 (1959)

    Article  ADS  Google Scholar 

  23. Lee J.M.: Introduction to Smooth Manifolds. Springer, New York (2012)

    Book  Google Scholar 

  24. Marsden J.E., Hughes T.: Mathematical Foundations of Elasticity. Dover Publications, New York (1994)

    Google Scholar 

  25. Penrose R., Rindler W.: Spinors and space–time. Two-Spinor Calculus and Relativistic Fields, vol. I. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  26. Schwarz G.: Hodge Decomposition—A Method for Solving Boundary Value Problems (Lecture Notes in Mathematics-1607). Springer, Berlin (1995)

    Google Scholar 

  27. Srivastava S.K.: General Relativity And Cosmology. Prentice-Hall Of India Pvt. Limited, New Delhi (2008)

    Google Scholar 

  28. Tenenblat K.: On isometric immersions of Riemannian manifolds. Boletim da Soc. Bras. de Mat. 2, 23–36 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  29. Truesdell C.: Invariant and complete stress functions for general continua. Arch. Rational Mech. Anal. 4, 1–27 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  30. Wolf, J.A.: Spaces of Constant Curvature. American Mathematical Society, Providence (2011)

  31. Yavari A.: Compatibility equations of nonlinear elasticity for non-simply-connected bodies. Arch. Rational Mech. Anal. 209, 237–253 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Yavari.

Additional information

Communicated by M. Ortiz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angoshtari, A., Yavari, A. Differential Complexes in Continuum Mechanics. Arch Rational Mech Anal 216, 193–220 (2015). https://doi.org/10.1007/s00205-014-0806-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0806-1

Keywords

Navigation