Skip to main content
Log in

Global Weak Solutions to the Equations of Compressible Flow of Nematic Liquid Crystals in Two Dimensions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider weak solutions to a simplified Ericksen–Leslie system of two-dimensional compressible flow of nematic liquid crystals. An initial-boundary value problem is first studied in a bounded domain. By developing new techniques and estimates to overcome the difficulties induced by the supercritical nonlinearity \({|\nabla\mathbf{d}|^2\mathbf{d}}\) in the equations of angular momentum on the direction field, and adapting the standard three-level approximation scheme and the weak convergence arguments for the compressible Navier–Stokes equations, we establish the global existence of weak solutions under a restriction imposed on the initial energy including the case of small initial energy. Then the Cauchy problem with large initial data is investigated, and we prove the global existence of large weak solutions by using the domain expansion technique and the rigidity theorem, provided that the second component of initial data of the direction field satisfies some geometric angle condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A., John J.: Sobolev Space. Academic Press, New York (2005)

    Google Scholar 

  2. Cho Y., Kim H.: On classical solutions of the compressible Navier–Stokes equations with nonnegative initial densities. Manuscripta Math. 120(1), 91–129 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ding S.-J., Lin J., Wang C.-Y., Wen H.-Y.: Compressible hydrodynamic flow of liquid crystals in 1-D. Discret. Cont. Dyn. S. B 15, 357–371 (2011)

    MATH  Google Scholar 

  4. Ding S.-J., Wen H.: Solutions of incompressible hydrodynamic flow of liquid crystals. Nonlinear Anal. Real World Appl. 12(3), 1510–1531 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ericksen J.: Hydrostatic theory of liquid crystal. Arch. Rational Mech. Anal. 9(1), 371–378 (1962)

    ADS  MATH  MathSciNet  Google Scholar 

  6. Evans L.C.: Partial Differential Equations. American Mathematical Society, Providence, RI (1998)

    MATH  Google Scholar 

  7. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford, 2004

  8. Feireisl E., Novotnỳ A., Petzeltová H.: On the existence of globally defined weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 3(4), 358–392 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Gennes, de P.G., Prost, J.: The Physics of Liquid Crystals, 2nd edn. Oxford University Press, Oxford (1995)

  10. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Germany (1998)

    Google Scholar 

  11. Hardt R., Kinderlehrer D., Lin F.-H.: Existence and partial regularity of static liquid crystal configurations. Commun. Math. Phys. 105(4), 547–570 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Hineman L.J., Wang C.-Y.: Well-posedness of nematic liquid crystal flow in \({L^3_{{\rm uloc}}(R^3)}\). Arch. Rational Mech. Anal. 105(1), 177–218 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hsiao, L., Jiang, S.: Nonlinear hyperbolic-parabolic coupled systems. In: Handbook of Differential Equations: Evolutionary Equations, vol. 1, pp. 287–384 (2002)

  14. Hu X., Wu H.: Global solution to the three-dimensional compressible flow of liquid crystals. SIAM J. Math. Anal. 45(5), 2678–2699 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Huang T., Wang C.-Y., Wen H.-Y.: Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch. Rational Mech. Anal. 204(1), 285–311 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Huang T., Wang C.-Y., Wen H.-Y.: Strong solutions of the compressible nematic liquid crystal flow. J. Differ. Equ. 252(3), 2222–2265 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Jiang F., Jiang S., Wang D.: On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain. J. Funct. Anal. 265(12), 3369–3397 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jiang F., Tan Z.: Global weak solution to the flow of liquid crystals system. Math. Meth. Appl. Sci. 32(17), 2243–2266 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jiang F., Tan Z., Wang H.-Q.: A note on global existence of weak solutions to the compressible magnetohydrodynamic equations with Coulomb force. J. Math. Anal. Appl. 379(1), 316–324 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jiang S., Zhang P.: On spherically symmetric solutions of the compressible isentropic Navier–Stokes equations. Commun. Math. Phys. 215(3), 559–581 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Lei, Z., Li, D., Zhang, X.-Y.: Remarks of global wellposedness of liquid crystal flows and heat flows of harmonic maps in two dimensions. To appear in Proceedings of the AMS. arXiv:1205.1269v3 [math.AP] (2012)

  22. Leslie F.M.: Some constitutive equations for liquid crystals. Arch. Rational Mech. Anal. 28(4), 265–283 (1968)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Li, J., Xu, Z.-H., Zhang, J.-W.: Global well-posedness with large oscillations and vacuum to the three-dimensional equations of compressible nematic liquid crystal flows. arXiv:1204.4966v1 [math.AP] (2012)

  24. Li X., Wang D.: Global solution to the incompressible flow of liquid crystals. J. Differ. Equ. 252(1), 745–767 (2012)

    Article  ADS  MATH  Google Scholar 

  25. Li, X., Wang, D.: Global strong solution to the density-dependent incompressible flow of liquid crystals. To appear in Transactions of AMS. arXiv:1202.1011v1 [math.AP] (2012)

  26. Lin F.-H.: Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena. Comm. Pure Appl. Math. 42(6), 789–814 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lin F.-H., Lin J., Wang C.-Y.: Liquid crystal flows in two dimensions. Arch. Rational Mech. Anal 197(1), 297–336 (2010)

    Article  ADS  MATH  Google Scholar 

  28. Lin F.-H., Liu C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48(5), 501–537 (1995)

    Article  MATH  Google Scholar 

  29. Lin F.-H., Liu C.: Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals. Discret. Cont. Dyn. S. 2, 1–23 (1996)

    MATH  Google Scholar 

  30. Lin F.-H., Wang C.-Y.: The Analysis of Harmonic Maps and Their Heat Flows. World Scientific, Hackensack (2008)

    Book  MATH  Google Scholar 

  31. Lin J.-Y., Ding S.-J.: On the well-posedness for the heat flow of harmonic maps and the hydrodynamic flow of nematic liquid crystals in critical spaces. Math. Meth. Appl. Sci. 35(2), 158–173 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lions P.L.: Mathematical Topics in Fluid Mechanics: Compressible Models. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  33. Liu X.-G., Qing J.: Globally weak solutions to the flow of compressible liquid crystals system. Discret. Cont. Dyn. S. A 33(2), 757–788 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. Liu X.G., Zhang Z.-Y.: L p existence of the flow of liquid crystals system. Chin. Ann. Math. Ser. A 30(1), 1–20 (2009)

    Article  MATH  Google Scholar 

  35. Novotnỳ A., Straškraba I.: Introduction to the Mathematical Theory of Compressible Flow. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  36. Suen A., Hoff D.: Global low-energy weak solutions of the equations of three-dimensional compressible magnetohydrodynamics. Arch. Rational Mech. Anal. 205(1), 27–58 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Teman, R.: Navier–Stokes Equations: Theory and Numerical Analysis. AMS Chelsea, Rhode Island (2001)

  38. Wang C.-Y.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Rational Mech. Anal. 200(1), 1–19 (2011)

    Article  ADS  MATH  Google Scholar 

  39. Wang D., Yu C.: Global weak solution and large-time behavior for the compressible flow of liquid crystals. Arch. Rational Mech. Anal. 204(3), 881–915 (2012)

    Article  ADS  MATH  Google Scholar 

  40. Wu, G.-C., Tan, Z.: Global low-energy weak solution and large-time behavior for the compressible flow of liquid crystals. arXiv:1210.1269v1 [math.AP] (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehua Wang.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F., Jiang, S. & Wang, D. Global Weak Solutions to the Equations of Compressible Flow of Nematic Liquid Crystals in Two Dimensions. Arch Rational Mech Anal 214, 403–451 (2014). https://doi.org/10.1007/s00205-014-0768-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0768-3

Keywords

Navigation