Skip to main content
Log in

Existence and Uniqueness for a Coupled Parabolic-Elliptic Model with Applications to Magnetic Relaxation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove the existence, uniqueness and regularity of weak solutions of a coupled parabolic-elliptic model in 2D, and the existence of weak solutions in 3D; we consider the standard equations of magnetohydrodynamics with the advective terms removed from the velocity equation. Despite the apparent simplicity of the model, the proof in 2D requires results that are at the limit of what is available, including elliptic regularity in L 1 and a strengthened form of the Ladyzhenskaya inequality

$$\| f \|_{L^{4}} \leqq c \| f \|_{L^{2,\infty}}^{1/2} \|\nabla f\|_{L^{2}}^{1/2},$$

which we derive using the theory of interpolation. The model potentially has applications to the method of magnetic relaxation introduced by Moffatt (J Fluid Mech 159:359–378, 1985) to construct stationary Euler flows with non-trivial topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin J.P.: Un théorème de compacité. C. R. Acad. Sci. Paris 256, 5042–5044 (1963)

    MATH  MathSciNet  Google Scholar 

  2. Azzam, J., Bedrossian, J.: Bounded mean oscillation and the uniqueness of active scalar equations (2012, Preprint). arXiv:1108.2735v2[math.AP]

  3. Bahouri H., Chemin J.Y., Danchin R.: Fourier analysis and nonlinear partial differential equations. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  4. Bennett C., Sharpley R.: Interpolation of operators. Academic Press Inc., New York (1988)

    MATH  Google Scholar 

  5. Bergh J., Löfström J.: Interpolation spaces.An introduction. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  6. Casella E., Secchi P., Trebeschi P.: Global classical solutions for MHD system. J. Math. Fluid Mech. 5(1), 70–91 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Casella E., Trebeschi P.: A global existence result in Sobolev spaces for MHD system in the half-plane. Rend. Sem. Mat. Univ. Padova 108, 79–91 (2002)

    MATH  MathSciNet  Google Scholar 

  8. Chemin J.Y., Desjardins B., Gallagher I., Grenier E.: Mathematical geophysics: an introduction to rotating fluids and the Navier–Stokes equations. Oxford University Press, London (2006)

    Google Scholar 

  9. Chen J., Zhu X.: A note on BMO and its application. J. Math. Anal. Appl. 303(2), 696–698 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cichocki B., Felderhof B.U.: Periodic fundamental solution of the linear Navier-Stokes equations. Phys. A 159(1), 19–27 (1989)

    Article  MathSciNet  Google Scholar 

  11. Constantin P., Majda A.J., Tabak E.: Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7(6), 1495–1533 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Dong, J.G., Xiao, T.J.: Notes on interpolation inequalities. Adv. Differ. Equ.. (2011). Art. ID 913403

  13. Duvaut G., Lions J.L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Rational Mech. Anal. 46, 241–279 (1972)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Enciso, A., Peralta-Salas, D.: Knots and links in steady solutions of the Euler equation. Ann. Math. (2) 175(1), 345–367 (2012)

  15. Evans L.C.: Partial differential equations. American Mathematical Society, USA (1998)

    MATH  Google Scholar 

  16. Fan J., Ozawa T.: Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-α-MHD model. Kinet. Relat. Models 2(2), 293–305 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fefferman C.L., McCormick D.S., Robinson J.C., Rodrigo J.L.: Higher order commutator estimates and local existence for the non-resistive MHD equations and related models. J. Funct. Anal. 267(4), 1035–1056 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Foias C., Manley O., Rosa R., Temam R.: Navier–Stokes equations and turbulence. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  19. Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations. 2nd ed. Springer, Berlin (2011)

  20. Grafakos, L.: Classical Fourier analysis, 2nd ed. Springer, Berlin, 2008

  21. Hasimoto H.: On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5, 317–328 (1959)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Jiu Q., Niu D.: Mathematical results related to a two-dimensional magneto-hydrodynamic equations. Acta Math. Sci. Ser. B Engl. Ed. 26(4), 744–756 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Koch H., Tataru D.: Well-posedness for the Navier-Stokes equations. Adv. Math. 157(1), 22–35 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kozono, H.: Weak and classical solutions of the two-dimensional magnetohydrodynamic equations. Tohoku Math. J. (2) 41(3), 471–488 (1989)

  25. Kozono, H., Minamidate, K., Wadade, H.: Sobolev’s imbedding theorem in the limiting case with Lorentz space and BMO. In: Asymptotic analysis and singularities—hyperbolic and dispersive PDEs and fluid mechanics. Adv. Stud. Pure Math., vol. 47, pp. 159–167. Math. Soc. Japan, Tokyo (2007)

  26. Kozono H., Wadade H.: Remarks on Gagliardo–Nirenberg type inequality with critical Sobolev space and BMO. Math. Z. 259(4), 935–950 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ladyzhenskaya, O.A.: Solution “in the large” to the boundary value problem for the Navier–Stokes equations in two space variables. Sov. Phys. Dokl. 3, 1128–1131 (1958). Translation from Dokl. Akad. Nauk SSSR 123, 427–429 (1958)

  28. Lemarié-Rieusset P.G.: Recent developments in the Navier–Stokes problem. Chapman & Hall/CRC, USA (2002)

    Book  MATH  Google Scholar 

  29. Lions J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, France (1969)

    MATH  Google Scholar 

  30. McCormick D.S., Robinson J.C., Rodrigo J.L.: Gagliardo–Nirenberg inequalities using weak Lebesgue spaces and BMO. Milan J. Math. 81(2), 265–289 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mitrea D., Mitrea I.: On the regularity of Green functions in Lipschitz domains. Commun. Partial Differ. Equ. 36(2), 304–327 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Moffatt H.K.: Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. I. Fundam. J. Fluid Mech. 159, 359–378 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Moffatt, H.K.: Relaxation routes to steady Euler flows of complex topology (2009). http://www2.warwick.ac.uk/fac/sci/maths/research/miraw/days/t3_d5_he/keith.pdf. Slides of talk given during MIRaW Day, “Weak Solutions of the 3D Euler Equations”, University of Warwick, 8th June 2009

  34. Muscalu C., Schlag W.: Classical and Multilinear Harmonic Analysis, volumes I and II. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  35. Núñez M.: The limit states of magnetic relaxation. J. Fluid Mech. 580, 251–260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Sermange M., Temam R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36(5), 635–664 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Simon, J.: Compact sets in the space L p(0,T;B). Ann. Mat. Pura Appl. (4) 146, 65–96 (1987)

  38. Temam R.: Navier–Stokes equations. AMS Chelsea Publishing, Chelsea (2001)

    Google Scholar 

  39. Zhou Y., Fan J.: A regularity criterion for the 2D MHD system with zero magnetic diffusivity. J. Math. Anal. Appl. 378(1), 169–172 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. McCormick.

Additional information

Communicated by V. Šverák

DSMcC is a member of the Warwick “MASDOC” doctoral training centre, which is funded by EPSRC Grant EP/HO23364/1. JCR is supported by an EPSRC Leadership Fellowship EP/G007470/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCormick, D.S., Robinson, J.C. & Rodrigo, J.L. Existence and Uniqueness for a Coupled Parabolic-Elliptic Model with Applications to Magnetic Relaxation. Arch Rational Mech Anal 214, 503–523 (2014). https://doi.org/10.1007/s00205-014-0760-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0760-y

Keywords

Navigation