Skip to main content
Log in

The Motion of a Fluid-Rigid Ball System at the Zero Limit of the Rigid Ball Radius

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the limiting motion of a system of rigid ball moving in a Navier–Stokes fluid in \({\mathbb{R}^3}\) as the radius of the ball goes to zero. Recently, Dashti and Robinson solved this problem in the two-dimensional case, in the absence of rotation of the ball (Dashti and Robinson in Arch Rational Mech Anal 200:285–312, 2011). This restriction was caused by the difficulty in obtaining appropriate uniform bounds on the second order derivatives of the fluid velocity when the rigid body can rotate. In this paper, we show how to obtain the required uniform bounds on the velocity fields in the three- dimensional case. These estimates then allow us to pass to the zero limit of the ball radius and show that the solution of the coupled system converges to the solution of the Navier–Stokes equations describing the motion of only fluid in the whole space. The trajectory of the centre of the ball converges to a fluid particle trajectory, which justifies the use of rigid tracers for finding Lagrangian paths of fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Conca C., San Martín J.H., Tucsnak M.: Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Comm. Partial Differ. Equ. 25(5–6), 1019–1042 (2000)

    MATH  Google Scholar 

  2. Crispo F., Maremonti P.: An interpolation inequality in exterior domains. Rend. Sem. Mat. Univ. Padova 112, 11–39 (2004)

    MATH  MathSciNet  Google Scholar 

  3. Cumsille, P., Takahashi, T.: Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Czechoslovak Math. J. 58(133)(4), 961–992 (2008)

    Google Scholar 

  4. Dashti M., Robinson J.C.: The motion of a fluid-rigid disc system at the zero limit of the rigid disc radius. Arch. Ration. Mech. Anal. 200(1), 285–312 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Desjardins B., Esteban M.J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146(1), 59–71 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Desjardins B., Esteban M.J.: On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Comm. Partial Differ. Equ. 25(7–8), 1399–1413 (2000)

    MATH  MathSciNet  Google Scholar 

  7. Feireisl, E.: On the motion of rigid bodies in a viscous fluid. Appl. Math. 47(6), 463–484 (2002). Mathematical theory in fluid mechanics (Paseky, 2001)

    Google Scholar 

  8. Galdi, G.P.: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. Handbook of Mathematical Fluid Dynamics Vol. I. North-Holland, Amsterdam, 653–791, 2002

  9. Galdi, G.P., Silvestre, A.L.: Strong solutions to the problem of motion of a rigid body in a Navier–Stokes liquid under the action of prescribed forces and torques. Nonlinear Problems in Mathematical Physics and Related Topics, I, Vol. I of Int. Math. Ser. (N. Y.). Kluwer/Plenum, New York, 121–144, 2002

  10. Galdi, G.P.: Slow motion of a body in a viscous incompressible fluid with application to particle sedimentation. Recent Developments in Partial Differential Equations. Aracne, Rome, 1–35, 1998

  11. Galdi G.P.: On the steady self-propelled motion of a body in a viscous incompressible fluid. Arch. Ration. Mech. Anal. 148(1), 53–88 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grandmont C., Maday Y.: Existence for an unsteady fluid-structure interaction problem. M2N Math. Model. Numer. Anal. 34((3), 609–636 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gunzburger M.D., Lee H.-C., Seregin G.A.: Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2(3), 219–266 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Heywood J.G.: The Navier–Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29(5), 639–681 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hoffmann K.H., Starovoitov V.N.: On a motion of a solid body in a viscous fluid. Two-dimensional case. Adv. Math. Sci. Appl. 9(2), 633–648 (1999)

    MATH  MathSciNet  Google Scholar 

  16. Iftimie D., Lopes Filho M.C., Nussenzveig Lopes H.J.: Two-dimensional incompressible viscous flow around a small obstacle. Math. Ann. 336(2), 449–489 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Iftimie D., Kelliher J.P.: Remarks on the vanishing obstacle limit for a 3D viscous incompressible fluid. Proc. Am. Math. Soc. 137(2), 685–694 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Judakov, N.V.: The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid. Dinamika Splošn. Sredy (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami), 249–253, 255, (1974)

  19. Lamb, H.: Hydrodynamics. Cambridge University Press, New York, 1932.

  20. Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 1, volume 3 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York, Incompressible models, Oxford Science Publications, 1996

  21. Robinson J.C.: A coupled particle-continuum model: well-posedness and the limit of zero radius. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2045), 1311–1334 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Serre D.: Chute libre d’un solide dans un fluide visqueux incompressible. Existence. Japan J. Appl. Math. 4(1), 99–110 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. Silvestre A.L.: On the slow motion of a self-propelled rigid body in a viscous incompressible fluid. J. Math. Anal. Appl. 274(1), 203–227 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Stokes G.G.: On the effect of the internal friction of fluids on the motion of pendulums. Camb. Philos. Soc. 9, 8–106 (1851)

    ADS  Google Scholar 

  25. Takahashi T., Tucsnak M.: Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6(1), 53–77 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Temam, R.: Navier–Stokes equations. Theory and Numerical Analysis. Studies in Mathematics and its Applications, Vol. 2. North-Holland Publishing Co., Amsterdam, 1977

  27. Weinberger, H.F.: On the steady fall of a body in a Navier–Stokes fluid. Partial differential equations (Proceedings of Symposia in Pure Mathamatics, Vol. XXIII, University of California, Berkeley, 1971), 421–439. Am. Math. Soc., Providence, RI, 1973

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takéo Takahashi.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silvestre, A.L., Takahashi, T. The Motion of a Fluid-Rigid Ball System at the Zero Limit of the Rigid Ball Radius. Arch Rational Mech Anal 211, 991–1012 (2014). https://doi.org/10.1007/s00205-013-0696-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0696-7

Keywords

Navigation