Skip to main content
Log in

Kinetic Relations for a Lattice Model of Phase Transitions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The aim of this article is to analyse travelling waves for a lattice model of phase transitions, specifically the Fermi–Pasta–Ulam chain with piecewise quadratic interaction potential. First, for fixed, sufficiently large subsonic wave speeds, we rigorously prove the existence of a family of travelling wave solutions. Second, it is shown that this family of solutions gives rise to a kinetic relation which depends on the jump in the oscillatory energy in the solution tails. Third, our constructive approach provides a very good approximate travelling wave solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeyaratne R., Knowles J.K.: Kinetic relations and the propagation of phase boundaries in solids. Arch. Rational Mech. Anal. 114(2), 119–154 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Abeyaratne R., Knowles J.K.: Impact-induced phase transitions in thermoelastic solids. Philos. Trans. Roy. Soc. Lond. Ser. A 355(1726), 843–867 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Atkinson W., Cabrera N.: Motion of a Frenkel-Kontorowa dislocation in a one-dimensional crystal. Phys. Rev. 138(3A), A763–A766 (1965)

    Article  Google Scholar 

  4. Balk A.M., Cherkaev A.V., Slepyan L.I.: Dynamics of chains with non-monotone stress-strain relations. I. Model and numerical experiments. J. Mech. Phys. Solids 49(1), 131–148 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Balk A.M., Cherkaev A.V., Slepyan L.I.: Dynamics of chains with non-monotone stress-strain relations. II. Nonlinear waves and waves of phase transition. J. Mech. Phys. Solids 49(1), 149–171 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Earmme Y.Y., Weiner J.H.: Dislocation dynamics in the modified Frenkel-Kontorova model. J. Appl. Phys. 48(8), 3317–3331 (1977)

    Article  ADS  Google Scholar 

  7. Fermi, E., Pasta, J., Ulam, S.: Studies in nonlinear problems, I. Technical Report LA 1940, Los Alamos, 1955. Reproduced in: Newell, A.C. (Ed.) Nonlinear wave motion. Lectures in Applied Mathematics, vol. 15. American Mathematical Society, Providence, 1974

  8. Herrmann M., Schwetlick H., Zimmer J.: On selection criteria for problems with moving inhomogeneities. Contin. Mech. Thermodyn. 24, 21–36 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  9. Hildebrand F.E., Abeyaratne R.: An atomistic investigation of the kinetics of detwinning. J. Mech. Phys. Solids 56(4), 1296–1319 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kastner O., Ackland G.J.: Mesoscale kinetics produces martensitic microstructure. J. Mech. Phys. Solids 57(1), 109–121 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Kresse O., Truskinovsky L.: Mobility of lattice defects: discrete and continuum approaches. J. Mech. Phys. Solids 51(7), 1305–1332 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Penrose O.: Reversibility and irreversibility. Oberwolfach Reports 3, 2682–2685 (2006) WorkshopPDEs and Materials

    Google Scholar 

  13. Roytburd, V., Slemrod, M.: Dynamic phase transitions and compensated compactness. In Dynamical Problems in Continuum Physics (Minneapolis, Minn., 1985). Springer, New York, 289–304, 1987

  14. Schwetlick, H., Sutton, D.C., Zimmer, J.: Nonexistence of slow heteroclinic travelling waves for a bistable Hamiltonian lattice model. J. Nonlinear Sci. (2012). doi:10.1007/s00332-012-9131-8

  15. Schwetlick H., Zimmer J.: Existence of dynamic phase transitions in a one-dimensional lattice model with piecewise quadratic interaction potential. SIAM J. Math Anal. 41(3), 1231–1271 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Slepyan L.I.: Feeding and dissipative waves in fracture and phase transition. I. Some 1D structures and a square-cell lattice. J. Mech. Phys. Solids 49(3), 469–511 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Slepyan L.I., Ayzenberg-Stepanenko M.V.: Localized transition waves in bistable-bond lattices. J. Mech. Phys. Solids 52(7), 1447–1479 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Slepyan L., Cherkaev A., Cherkaev E.: Transition waves in bistable structures. II. Analytical solution: wave speed and energy dissipation. J. Mech. Phys. Solids 53(2), 407–436 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Sommerfeld, A.: Partial Differential Equations in Physics. Academic Press, New York, 1949. Translated by Ernst G. Straus

  20. Sprekels J., Zheng S.M.: Global solutions to the equations of a Ginzburg-Landau theory for structural phase transitions in shape memory alloys. Phys. D 39(1), 59–76 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Truskinovski L.M.: Dynamics of nonequilibrium phase boundaries in a heat conducting non-linearly elastic medium. Prikl. Mat. Mekh. 51(6), 1009–1019 (1987)

    MathSciNet  Google Scholar 

  22. Truskinovsky, L., Vainchtein, A.: Explicit kinetic relation from “first principles”. In Mechanics of Material Forces. Adv. Mech. Math., vol. 11. Springer, New York, 43–50, 2005

  23. Truskinovsky L., Vainchtein A.: Kinetics of martensitic phase transitions: lattice model. SIAM J. Appl. Math. 66(2), 533–553 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Truskinovsky L., Vainchtein A.: Quasicontinuum models of dynamic phase transitions. Contin. Mech. Thermodyn. 18(1–2), 1–21 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Turteltaub S.: Adiabatic phase boundary propagation in a thermoelastic solid. Math. Mech. Solids 2(2), 117–142 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Zimmer.

Additional information

Communicated by K. Bhattacharya

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwetlick, H., Zimmer, J. Kinetic Relations for a Lattice Model of Phase Transitions. Arch Rational Mech Anal 206, 707–724 (2012). https://doi.org/10.1007/s00205-012-0566-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0566-8

Keywords

Navigation