Skip to main content
Log in

Rigorous Derivation of a Homogenized Bending-Torsion Theory for Inextensible Rods from Three-Dimensional Elasticity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Acerbi E., Buttazzo G., Percivale D.: A variational definition of the strain energy for an elastic string. J. Elasticity 25, 137–148 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arbogast T., Douglas J. Jr., Hornung U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21(4), 823–836 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allaire G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Attouch, H.: Variational Convergence for Functions and Operators. Pitman, 1984

  5. Babadjian J.-F., Baía M.: 3D-2D analysis of a thin film with periodic microstructure. Proc. Roy. Soc. Edinburgh: Sect. A Math. 136(2), 223–243 (2006)

    Article  MATH  Google Scholar 

  6. Braides A., Fonseca I., Francfort G.A.: 3D-2D asymptotic analysis for inhomogeneous thin films. Indiana Univ. Math. J. 49(4), 1367–1404 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgeat A., Luckhaus S., Mikelić A.: Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow. SIAM J. Math. Anal. 27(6), 1520–1543 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications, Vol. 5. North-Holland, Amsterdam 1978

  9. Braides A.: Homogenization of some almost periodic coercive functional. Rend. Accad. Naz. Sci. Detta XL, V. Ser. Mem. Mat. 9, 313–322 (1985)

    MathSciNet  MATH  Google Scholar 

  10. Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford Lecture Series in Mathematics and its Applications, Vol. 17. Oxford Science Publications, 1999

  11. Cioranescu D., Damlamian A., Griso G.: Periodic unfolding and homogenization. Comptes Rendus Math. 335(1), 99–104 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Giorgi, E., Dal Maso, G.: Gamma-convergence and Calculus of Variations. Mathematical Theories of Optimization. Lecture Notes in Mathematics, Vol. 979. Springer, Berlin, 121–143, 1983

  13. De Giorgi E., Franzoni T.: Su un tipo di convergenza variazionale. Atti della Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze Fisiche, Matematiche e Naturali 58(6), 842–850 (1975)

    MathSciNet  MATH  Google Scholar 

  14. Dal Maso, G.: An Introduction to Γ -convergence. Progress in Nonlinear Differential Equations and their Applications, Vol. 8. Birkhäuser, Boston, 1993

  15. Dal Maso G., Negri M., Percivale D.: Linearized elasticity as Γ -limit of finite elasticity. Set-Valued Anal. 10(2–3), 165–183 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Friesecke G., James R.D., Müller S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461–1506 (2002)

    Article  MATH  Google Scholar 

  17. Friesecke G., James R.D., Müller S.: A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Rational Mech. Anal. 180(2), 183–236 (2006)

    Article  ADS  MATH  Google Scholar 

  18. Freddi, L., Mora, M.G., Paroni, R.: Nonlinear thin-walled beams with a rectangular cross-section—part I. Math. Models Methods Appl. Sci. 22(3) (2012)

  19. Geymonat G., Müller S., Triantafyllidis N.: Homogenization of non-linearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Arch. Rational Mech. Anal. 122(3), 231–290 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Gloria A., Neukamm S.: Commutability of homogenization and linearization at identity in finite elasticity and applications. Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire 28(6), 941–964 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Le Dret H., Raoult A.: The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. Journal de Mathématiques Pures et Appliquées. Neuvième Série 74(6), 549–578 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Mielke A.: Saint-venant’s problem and semi-inverse solutions in nonlinear elasticity. Arch. Rational Mech. Anal. 102, 205–229 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Mora M.G., Müller S.: Derivation of the nonlinear bending-torsion theory for inextensible rods by Γ-convergence. Calc. Var. Partial Differ. Equ. 18(3), 287–305 (2003)

    Article  MATH  Google Scholar 

  24. Müller S., Neukamm S.: On the commutability of homogenization and linearization in finite elasticity. Arch. Rational Mech. Anal. 201, 465–500 (2011) 10.1007/s00205-011-0438-7

    Article  ADS  Google Scholar 

  25. Murat, F., Tartar, L.: H-Convergence, 1997

  26. Mielke A., Timofte A.M.: Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM J. Math. Anal. 39(2), 642–668 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Müller S.: Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Rational Mech. Anal. 99(3), 189–212 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Neukamm, S.: Homogenization, Linearization and Dimension Reduction in Elasticity with Variational Methods. PhD thesis, Technische Universität München, 2010

  29. Nguetseng G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3), 608–623 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Olejnik O.A., Shamaev A.S., Iosif’yan G.A.: Problèmes d’homogénéisation pour le système de l’élasticité linéaire à coefficients oscillant non-uniformément. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics 298, 273–276 (1984)

    MATH  Google Scholar 

  31. Scardia L.: The nonlinear bending-torsion theory for curved rods as gamma-limit of three-dimensional elasticity. Asympt. Anal. 47(3–4), 317–343 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Scardia L.: Asymptotic models for curved rods derived from nonlinear elasticity by gamma-convergence. Proc. Roy. Soc. Edinburgh Section A: Math. 139, 1037–1070 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shu Y.C.: Heterogeneous thin films of martensitic materials. Arch. Rational Mech. Anal. 153(1), 39–90 (2000)

    Article  ADS  MATH  Google Scholar 

  34. Sánchez-Palencia E.: Comportements local et macroscopique d’un type de milieux physiques heterogenes. Int. J. Eng. Sci. 12, 331–351 (1974)

    Article  MATH  Google Scholar 

  35. Sánchez-Palencia, E.: Nonhomogeneous Media and Vibration Theory. Lecture Notes in Physics, Vol. 127. Springer, Berlin, 1980

  36. Spagnolo S.: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat. III. Ser. 22, 571–597 (1968)

    MATH  Google Scholar 

  37. Tartar, L.: Cours peccot au collège de france. Paris, 1977

  38. Triantafyllidis N., Maker B.N.: On the comparison between microscopic and macroscopic instability mechanisms in a class of fiber-reinforced composites. J. Appl. Mech. 52, 794–800 (1985)

    Article  ADS  MATH  Google Scholar 

  39. Velcic I.: Nonlinear weakly curved rod by Γ-convergence. J. Elast. (2011). doi:10.1007/s10659-011-9358-x

  40. Velcic, I.: Periodically wrinkled plate of the foppl von karman type. Preprint

  41. Visintin A.: Towards a two-scale calculus. Control Optim. Calc. Var. 12(3), 371 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Visintin A.: Two-scale convergence of some integral functionals. Calc. Var. Partial Differ. Equ. 29(2), 239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhikov, V.V., Kozlov, S.M., Olejnik, O.A.: Homogenization of Differential Operators and Integral Functionals. Transl. from the Russian by G.A. Yosifian. Springer, Berlin. xi, 570 p. DM 178.00; öS 1388.40; sFr. 178.00, 1994

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Neukamm.

Additional information

Communicated by S. Müller

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neukamm, S. Rigorous Derivation of a Homogenized Bending-Torsion Theory for Inextensible Rods from Three-Dimensional Elasticity. Arch Rational Mech Anal 206, 645–706 (2012). https://doi.org/10.1007/s00205-012-0539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0539-y

Keywords

Navigation