Skip to main content
Log in

Convergence of Ginzburg–Landau Functionals in Three-Dimensional Superconductivity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we consider the asymptotic behavior of the Ginzburg–Landau model for superconductivity in three dimensions, in various energy regimes. Through an analysis via Γ-convergence, we rigorously derive a reduced model for the vortex density and deduce a curvature equation for the vortex lines. In the companion paper (Baldo et al. Commun. Math. Phys. 2012, to appear) we describe further applications to superconductivity and superfluidity, such as general expressions for the first critical magnetic field H c1, and the critical angular velocity of rotating Bose–Einstein condensates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti G., Baldo S., Orlandi G.: Variational convergence for functionals of Ginzburg–Landau type. Indiana Univ. Math. J. 54, 1411–1472 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldo, S., Orlandi, G., Jerrard, R., Soner, M.: Vortex density models for superconductivity and superfluidity. Commun. Math. Phys. (2012, to appear)

  3. Baldo S., Orlandi G.: A note on the Hodge theory for functionals with linear growth: Manuscr. Math. 97, 453–467 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Baldo S., Orlandi G., Weitkamp S.: Convergence of minimizers with local energy bounds for the Ginzburg–Landau functionals. Indiana Univ. Math. J. 58, 2369–2407 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bethuel F., Brezis H., Hélein F.: Ginzburg–Landau vortices. Progress in Nonlinear Differential Equations and Their Applications, vol. 13. Boston, Birkhäuser (1994)

    Google Scholar 

  6. Bethuel F., Brezis H., Orlandi G.: Asymptotics for the Ginzburg–Landau equation in arbitrary dimensions. J. Funct. Anal. 186, 432–520 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bethuel F., Orlandi G., Smets D.: Vortex rings for the Gross-Pitaevskii equation. J. Eur. Math. Soc. 6, 17–94 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bethuel F., Orlandi G., Smets D.: Approximations with vorticity bounds for the Ginzburg–Landau functional. Commun. Contemp. Math. 6, 803–832 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bethuel, F., Rivière, T.: Vorticité dans les modèles de Ginzburg–Landau pour la supraconductivité. Séminaire X EDP, 1993–1994, Exp. No. XVI, cole Polytechnique, Palaiseau

  10. Bourgain J., Brezis H., Mironescu P.: H 1/2 maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation. Publ. Math. Inst. Hautes Etudes Sci. 99, 1–115 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Brezis H., Coron J.M., Lieb E.: Harmonic maps with defects. Commun. Math. Phys. 107, 649–705 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Brezis H., Serfaty S.: A variational formulation for the two-sided obstacle problem with measure data. Commun. Contemp. Math. 4(2), 357–374 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chiron D.: Boundary problems for the Ginzburg–Landau equation. Commun. Contemp. Math. 7, 597–648 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia, 2002

  15. De Rham G.: Sur la théorie des formes differentielles harmoniques. Ann. Univ. Grenoble 22, 135–152 (1946)

    MathSciNet  Google Scholar 

  16. Federer H.: Geometric Measure Theory. Grundlehren der mathematischen Wissenschaften, 153. Springer, New York (1969)

    Google Scholar 

  17. Giaquinta M., Modica G., Souček J.: Cartesian Currents and the Calculus of Variations vols. 1. and 2. Springer, Berlin (1998)

    Google Scholar 

  18. Giusti E.: BV Functions and Set of Finite Perimeter. Birkhäuser, Berlin (1982)

    Google Scholar 

  19. Iwaniec T., Scott C., Stroffolini B.: Nonlinear Hodge theory on manifolds with boundary. Ann. Mat. Pura Appl. (4) 177, 37–115 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jerrard R.: Lower bounds for generalized Ginzburg–Landau functionals. SIAM J. Math. Anal. 30, 721–746 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jerrard R., Montero A., Sternberg P.: Local minimizers of the Ginzburg–Landau energy with magnetic field in three dimensions. Commun. Math. Phys. 249, 549–577 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Jerrard R., Soner H.M.: The Jacobian and the Ginzburg–Landau energy. Calc. Variation PDE 14, 151–191 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jerrard R., Soner H.M.: Limiting behavior of the Ginzburg–Landau functional. J. Funct. Anal. 192, 524–561 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin F.H., Rivière T.: Complex Ginzburg–Landau equations in high dimensions and codimension two area minimizing currents. J. Eur. Math. Soc. 1, 237–311 (1999)

    Article  MATH  Google Scholar 

  25. Montero A.: Hodge decomposition with degenerate weights and the Gross-Pitaevskii energy. J. Funct. Anal. 254, 1926–1973 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Montero A., Sternberg P., Ziemer W.: Local minimizers with vortices in the Ginzburg–Landau system in three dimensions. Commun. Pure Appl. Math. 57, 99–125 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Morrey C.B.: A variational method in the theory of harmonic integrals. II. Am. J. Math. 78, 137–170 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sandier, E.: Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152, 379–403 (1998). Erratum: Ibid. 171, 233 (2000)

    Google Scholar 

  29. Sandier E., Serfaty S.: A rigorous derivation of a free-boundary problem arising in superconductivity. Ann. Sci. cole Norm. Sup. (4) 33(4), 561–592 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Sandier, E., Serfaty, S.: Vortices in the magnetic Ginzburg–Landau model. Progress in Nonlinear Differential Equations and their Applications, 70. Birkhäuser, Boston, 2007

  31. Sandier E., Serfaty S.: A product-estimate for Ginzburg–Landau and corollaries. J. Funct. Anal. 211, 219–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Spanier E.: Algebraic Topology. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Jerrard.

Additional information

Communicated by W. E.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldo, S., Jerrard, R.L., Orlandi, G. et al. Convergence of Ginzburg–Landau Functionals in Three-Dimensional Superconductivity. Arch Rational Mech Anal 205, 699–752 (2012). https://doi.org/10.1007/s00205-012-0527-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0527-2

Keywords

Navigation