Skip to main content
Log in

Homogenization of Stiff Plates and Two-Dimensional High-Viscosity Stokes Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The paper deals with the homogenization of stiff heterogeneous plates. Assuming that the coefficients are equi-bounded in L 1, we prove that the limit of a sequence of plate equations remains a plate equation which involves a strongly local linear operator acting on the second gradients. This compactness result is based on a div-curl lemma for fourth-order equations. On the other hand, using an intermediate stream function we deduce from the plates case a similar result for high-viscosity Stokes equations in dimension two, so that the nature of the Stokes equation is preserved in the homogenization process. Finally, we show that the L 1-boundedness assumption cannot be relaxed. Indeed, in the case of the Stokes equation the concentration of one very rigid strip on a line induces the appearance of second gradient terms in the limit problem, which violates the compactness result obtained under the L 1-boundedness condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellieud M., Bouchitté G.: Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26(4), 407–436 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Beurling A., Deny J.: Espaces de Dirichlet. Acta Math. 99, 203–224 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourgain J., Brezis H.: New estimates for elliptic equations and Hodge type systems. J. Eur. Math. Soc. 9, 277–315 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Braides A.: \({\Gamma}\) -Convergence for Beginners. Oxford University Press, Oxford (2002)

    Book  MATH  Google Scholar 

  5. Briane M.: Nonlocal effects in two-dimensional conductivity. Arch. Rational Mech. Anal. 182(2), 255–267 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Briane M., Casado-Díaz J.: Two-dimensional div-curl results. Application to the lack of nonlocal effects in homogenization. Commun. Partial Differ. Equ. 32, 935–969 (2007)

    Article  MATH  Google Scholar 

  7. Briane M., Casado-Díaz J.: Asymptotic behavior of equicoercive diffusion energies in dimension two. Calc. Var. Partial Differ. Equ. 29(4), 455–479 (2007)

    Article  MATH  Google Scholar 

  8. Briane M., Casado-Díaz J.: Estimate of the pressure when its gradient is the divergence of a measure. Applications. ESAIM COCV 17, 1066–1087 (2011)

    Article  MATH  Google Scholar 

  9. Briane M., Casado-Díaz J., Murat F.: The div-curl lemma ‘trente ans après’: an extension and an application to the G-convergence of unbounded monotone operators. J. Math. Pures Appl. 91, 476–494 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Briane M., Camar-Eddine M.: Homogenization of two-dimensional elasticity problems with very stiff coefficients. J. Math. Pures Appl. 88, 483–505 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Briane M., Tchou N.: Fibered microstructures for some nonlocal Dirichlet forms. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 30(4), 681–711 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Dal Maso G.: An Introduction to \({\Gamma}\)-Convergence. Birkhaüser, Boston (1993)

    Book  Google Scholar 

  13. Camar-Eddine M., Seppecher P.: Closure of the set of diffusion functionals with respect to the Mosco-convergence. Math. Models Methods Appl. Sci. 12(8), 1153–1176 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Camar-Eddine M., Seppecher P.: Determination of the closure of the set of elasticity functionals. Arch. Rational Mech. Anal. 170(3), 211–245 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Damlamian A., Vogelius M.: Homogenization limits of the equations of elasticity in thin domains. SIAM J. Math. Anal. 18(2), 435–451 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duvaut G., Metellus A.-M.: Homogénéisation d’une plaque mince en flexion de structure périodique et symétrique. C. R. Acad. Sci. Paris Sér. A-B. 283(13), 947–950 (1976)

    MathSciNet  MATH  Google Scholar 

  17. Fenchenko, V.N., Khruslov, E.Ya.: Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness. Dokl. AN Ukr.SSR 4 (1981)

  18. Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

  19. Girault, V., Raviart, P.-A.: Finite Element Approximation of the Navier-Stokes Equations. Lecture Notes in Mathematics, Vol. 749 (Eds. A. Dold and B. Eckmann) Springer, Berlin, 1979

  20. Lions P.-L.: The concentration compactness principle in the calculus of variations. The limit case, part 1. Rev. Mat. Iber. 1(1), 145–201 (1985)

    MATH  Google Scholar 

  21. Mosco U.: Composite media and asymptotic Dirichlet forms. J. Funct. Anal. 123(2), 368–421 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Murat, F., Tartar, L.: H-convergence. Topics in the mathematical modelling of composite materials. Progress in Nonlinear Differential Equations and their Applications (Eds. L. Cherkaev and R.V. Kohn) Birkaüser, Boston, 21–43, 1998

  23. Strauss, M.-J.: Variations of Korn’s and Sobolev’s inequalities. Partial Differential Equations: Proceedings of Symposium in Pure Mathematics, Vol. 23 (Ed. D. Spencer) American Mathematical Society, Providence, 207–214, 1973

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Briane.

Additional information

Communicated by G. Dal Maso

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briane, M., Casado-Díaz, J. Homogenization of Stiff Plates and Two-Dimensional High-Viscosity Stokes Equations. Arch Rational Mech Anal 205, 753–794 (2012). https://doi.org/10.1007/s00205-012-0520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0520-9

Keywords

Navigation