Skip to main content
Log in

Global Classical Solutions of the Relativistic Vlasov–Darwin System with Small Cauchy Data: The Generalized Variables Approach

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We show that a smooth, small enough Cauchy datum launches a unique classical solution of the relativistic Vlasov–Darwin (RVD) system globally in time. A similar result is claimed in Seehafer (Commun Math Sci 6:749–769, 2008) following the work in Pallard (Int Mat Res Not 57191:1–31, 2006). Our proof does not require estimates derived from the conservation of the total energy, nor those previously given on the transversal component of the electric field. These estimates are crucial in the references cited above. Instead, we exploit the formulation of the RVD system in terms of the generalized space and momentum variables. By doing so, we produce a simple a priori estimate on the transversal component of the electric field. We widen the functional space required for the Cauchy datum to extend the solution globally in time, and we improve decay estimates given in Seehafer (2008) on the electromagnetic field and its space derivatives. Our method extends the constructive proof presented in Rein (Handbook of differential equations: evolutionary equations, vol 3. Elsevier, Amsterdam, 2007) to solve the Cauchy problem for the Vlasov–Poisson system with a small initial datum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batt J.: Global symmetric solutions of the initial value problem of stellar dynamics. J. Differ. Equ. 25, 342–364 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Benachour S., Filbet F., Laurencot P., Sonnendrücker E.: Global existence for the Vlasov-Darwin system in \({\mathbb{R}^3}\) for small initial data. Math. Methods Appl. Sci. 26, 297–319 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bouchut F., Golse F., Pallard C.: Nonreasonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system. Revista Mat. Iberoamericana 20, 865–892 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouchut F., Golse F., Pallard C.: On classical solutions to the 3D relativistic Vlasov-Maxwell system: Glassey-Strauss’ theorem revisited. Arch. Rational Mech. Anal. 170, 1–15 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order. Classic in Mathematics Series. Springer, Berlin (2001)

    Google Scholar 

  6. Glassey R.: The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  7. Glassey R., Strauss W.: Singularity formation in a collisionless plasma could ocurr only at high velocities. Arch. Rational Mech. Anal. 92, 56–90 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  8. Hartman P.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  9. Jackson J.: Classical Electrodynamics. Wiley, New York (1999)

    MATH  Google Scholar 

  10. Krause T.B., Apte A., Morrison P.J.: A unified approach to the Darwin approximation. Phys. Plasmas 14, 102–112 (2002)

    Google Scholar 

  11. Lieb E., Loss M.: Analysis. Graduate Studies in Mathematics, Vol. 14. AMS, Providence (1997)

    Google Scholar 

  12. McOwen R.: Partial Differential Equations: Methods and Applications. Pearson Education, New Jersey (2003)

    Google Scholar 

  13. Pallard C.: The initial value problem for the relativistic Vlasov-Darwin system. Int. Mat. Res. Not. 57191, 1–31 (2006)

    MathSciNet  Google Scholar 

  14. Rein G.: Collisionless kinetic equations from astrophysics: the Vlasov-Poisson system. Handbook of Differential Equations: Evolutionary Equations, Vol. 3. Elsevier, Amsterdam (2007)

    Google Scholar 

  15. Seehafer M.: Global classical solutions of the Vlasov-Darwin system for small initial data. Commun. Math. Sci. 6, 749–769 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Slezák, B.: On the inverse function theorem and implicit function theorem in Banach spaces. Function Spaces, Poznań, 1986, 186–190 (Ed. Musielak, J.). Teubner, Leipzig, 1988

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinel Sospedra-Alfonso.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sospedra-Alfonso, R., Agueh, M. & Illner, R. Global Classical Solutions of the Relativistic Vlasov–Darwin System with Small Cauchy Data: The Generalized Variables Approach. Arch Rational Mech Anal 205, 827–869 (2012). https://doi.org/10.1007/s00205-012-0518-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0518-3

Keywords

Navigation