Skip to main content
Log in

Geometrically Constrained Walls in Two Dimensions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We address the effect of extreme geometry on a non-convex variational problem, motivated by studies on magnetic domain walls trapped by thin necks. The recent analytical results of Kohn and Slastikov (Calc. Var. Partial Differ. Equ. 28:33–57, 2007) revealed a variety of magnetic structures in three-dimensional ferromagnets depending on the size of the constriction. The main purpose of this paper is to study geometrically constrained walls in two dimensions. The analysis turns out to be significantly more challenging and requires the use of different techniques. In particular, the purely variational point of view of Kohn and Slastikov (loc. cit.) cannot be adopted in the present setting and is here replaced by a PDE approach. The existence of local minimizers representing geometrically constrained walls is proven under suitable symmetry assumptions on the domains and an asymptotic characterization of the wall profile is given. The limiting behavior, which depends critically on the scaling of length and height of the neck, turns out to be more complex than in the higher-dimensional case and a richer variety of regimes is shown to exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M., Stegun I.: Handbook of Mathematical Functions. Dover Publications, New York (1965)

    Google Scholar 

  2. Bruno P.: Geometrically constrained magnetic wall. Phys. Rev. Lett. 83, 2425–2428 (1999)

    Article  ADS  Google Scholar 

  3. Casten R., Holland C.: Instability results for reaction–diffusion equations with Neumann boundary conditions. J. Differ. Equ. 27, 266–273 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Casado-Daz J., Luna-Laynez M., Murat F.: The diffusion equation in a notched beam. Calc. Var. Partial Differ. Equ. 31, 297–323 (2008)

    Article  Google Scholar 

  5. Chambolle A., Doveri F.: Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets. Commun. Partial Differ. Equ. 22, 811–840 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dal Maso G., Ebobisse F., Ponsiglione M.: A stability result for nonlinear Neumann problems under boundary variations. J. Math. Pures Appl. 82, 503–532 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Evans, L.C.: Partial differential equations. Graduate Studies in Mathematics, Vol. 19. American Mathematical Society, Providence, 1998

  8. Hale J.K., Vegas J.: A nonlinear parabolic equation with varying domain. Arch. Ration. Mech. Anal. 86, 99–123 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chopra H.D., Hua S.Z.: Ballistic magnetoresistance over 3000% in Ni nanocontacts at room temperature. Phys. Rev. B 66, 020403(R) (2002)

    Article  ADS  Google Scholar 

  10. Jimbo S.: Singular perturbation of domains and semilinear elliptic equation. J. Fac. Sci. Univ. Tokyo 35, 27–76 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Jimbo S.: Singular perturbation of domains and semilinear elliptic equation 2. J. Differ. Equ. 75, 264–289 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jimbo S.: Singular perturbation of domains and semilinear elliptic equation 3. Hokkaido Math. J. 33, 11–45 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Jubert P.-O., Allenspach R., Bischof A.: Magnetic domain walls in constrained geometries. Phys. Rev. B 69, 220410(R) (2004)

    Article  ADS  Google Scholar 

  14. Kläui M.: Head-to-head domain walls in magnetic nanostructures. J. Phys. Condens. Matter 20, 313001 (2008)

    Article  ADS  Google Scholar 

  15. Kohn R.V., Slastikov V.: Geometrically constrained walls. Calc. Var. Partial Differ. Equ. 28, 33–57 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Molyneux V.A., Osipov V.V., Ponizovskaya E.V.: Stable two- and three-dimensional geometrically constrained magnetic structures: the action of magnetic fields. Phys. Rev. B 65, 184425 (2002)

    Article  ADS  Google Scholar 

  17. Pommerenke, C.: Boundary behaviour of conformal maps. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin, 1992

  18. Rudin W.: Real and Complex Analysis. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  19. Rubistein J., Schatzman M., Sternberg P.: Ginzburg-Landau model in thin loops with narrow constrictions. SIAM J. Appl. Math. 64, 2186–2204 (2004)

    Google Scholar 

  20. Serrin J.: A Harnack inequality for nonlinear equations. Bull. Am. Math. Soc. 69, 481–486 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tatara G., Zhao Y.-W., Munoz M., Garcia N.: Domain wall scattering explains 300% ballistic magnetoconductance of nanocontacts. Phys. Rev. Lett 83, 2030–2033 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Slastikov.

Additional information

Communicated by R. James

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morini, M., Slastikov, V. Geometrically Constrained Walls in Two Dimensions. Arch Rational Mech Anal 203, 621–692 (2012). https://doi.org/10.1007/s00205-011-0458-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0458-3

Keywords

Navigation